Search for any green Service

Find green products from around the world in one place

Meta Powers Towards Net Zero with Carbon Removal Projects

Meta Powers Towards Net Zero with Carbon Removal Projects

Any organisation worth their sustainability salt knows that reaching net zero emissions in operations alone is not enough

Decarbonization must extend beyond offices and factories to include Scope 3, from the emissions caused by suppliers to those created by employees.

For Meta, the world’s fifth-biggest tech company, this challenge is being met with ambitious targets and bold, meaningful action.

Having already hit net zero emissions in global operations in 2020, the social media giant now has its sustainability sights set on achieving net zero value chain emissions by 2030.

This is quite the challenge, given 99% of Meta’s carbon footprint came from Scope 3 in 2022 – and this continues to rise.

“We know that reaching net zero emissions across our value chain will not be an easy task,” Rachel Peterson, Vice President of Data Centre Strategy at Meta said in the company’s 2023 Sustainability Report.

“Right now, our Scope 3 emissions are increasing and will continue to do so as we work to support the global demand for the services we provide.”

 

Meta Tackles Hard-to-Abate Sectors with Carbon Removal Projects

Meta acknowledges that reaching this goal requires a significant shift in how it builds infrastructure and operates its entire business – and the 20-year-old company is prioritising efficiency and circularity in its business decisions and embracing low-carbon technology to operate with a lower emissions footprint.

For example, through its supplier engagement programme, Meta is working to decarbonise its supply chain and enable at least two-thirds of its suppliers to set SBTi-aligned reduction targets by 206.

However, there are some emissions from hard-to-abate sectors the Facebook owner knows will be difficult to reduce by the end of the decade.

And so to tackle this, Meta has turned to carbon removal projects, the third pillar in its high-level emissions reduction strategy.

In a white paper outlining its Net Zero Strategy, the company says investing in value chain emissions reductions projects is necessary to address sources it can’t directly influence – like companies or processes used to extract and process the copper in data centre hardware or mechanical electrical equipment.

“These projects offer a significant opportunity to decarbonise our business at pace and scale require to achieve our 2030 reduction target,” the paper states.

For Meta, a diverse approach to carbon removal that includes both nature-based and technological approaches is crucial – not only to ensure near-term climate impact but to support carbon removal solutions for the future.

This strategy involves the purchase of credits from projects that align with Meta’s principles, from reforestation to investment in direct air capture technology.

 

Nature-Based Solutions in Mitigating Carbon Emissions

Since 2021, the social media giant has supported numerous nature-based carbon removal projects, from Australia to Kenya, including increasing forest carbon stock of community ejido forests in Oaxaca and increasing stored carbon via protection of forests that provide habitat for mitigating salmon in California.

And demonstrating its continued commitment to investing in nature-based solutions to mitigate carbon emissions, Meta recently signed a major carbon credits deal for 6.75 million carbon credits with Aspiration, a leading provider of sustainable financial services.

These credits hail from a myriad of ecosystem restoration and natural carbon removal approaches, including native tree and mangrove reforestation, agroforestry, and the implementation of sustainable agricultural practices.

Meta’s role in the voluntary carbon market extends beyond purchasing credits from projects to supporting new project development through financing and encouraging the evolution of standards that bring more certainty to the market.

Among the ways Meta is driving development in the sector is through collaborative action that will “aggregate the resources of multiple companies to create rapid change at scale”.

This includes a collaborative pledge to develop carbon projects that centre Indigenous leadership.

Through 1t.org, the National Indian Carbon Coalition and Meta have pledged to support and promote a model of carbon projects that centre on the leadership, traditional ecological knowledge, and vision of Indigenous Peoples for themselves and their land.

Among other collaborative projects:

  • Participation in the Business Alliance to Scale Climate Solutions (BASCS), which provides a platform for businesses and climate experts to meet, learn, discuss and act together to improve climate solutions.
  • Collaboration with the World Resources Institute to develop a method to map forest canopy height↗ at individual tree-scale using a new Meta AI training model. We have mapped forest canopy in California and São Paulo, Brazil, and are making the data public and freely available

 

 

Meta’s Role in Scaling Carbon Removal Technologies

In further driving development in the sector, Meta joined forces with other big tech companies in 2022 to accelerate the development of carbon removal technologies by guaranteeing future demand.

While some say focusing on carbon capture is a distraction to the real goal of reducing greenhouse gas emissions, Meta argues that both emissions reductions and carbon dioxide removal are needed.

And climate science backs this up.

Scientists say removing the carbon emissions that we have already pumped into the atmosphere is necessary if we are to avoid the 1.5-degree rises in global temperature set out in the Paris Agreement.

Launched in 2022, Frontier is a US$925 million joint commitment between Meta, Stripe, Shopify, McKinsey Sustainability and Alphabet – more recently bolstered with four new companies – Autodesk, H&M Group, JPMorgan Chase and Workday – committing a combined US$100 million.

Frontier helps its member companies purchase CO2 removal via pre-purchase agreements or offtake agreements. The goal is to spur the development of a new industry by providing a novel source of funding that isn’t based on debt or equity investments, but on actual product purchases before the technology is fully available at scale.

So far, Frontier has spent $5.6 million buying nearly 9,000 tonnes of contracted carbon removal from 15 different carbon dioxide removal startups.

Among these, RepAir uses electrochemical cells and clean electricity to capture carbon dioxide from the air, while Living Carbon is a synthetic biology startup working on engineering natural systems to remove carbon dioxide.

With this strategy, Meta is helping to expand the voluntary carbon market, overcome barriers to scale, and at the same time achieve its own ambitious net zero goals.

 

 


 

 

Source

New Carbon Capture Tech Turns CO2 into Solid Carbon

New Carbon Capture Tech Turns CO2 into Solid Carbon

New capture technology turns CO2 into solid carbon, a coal-like product that can be safely reburied.

Scientists may have discovered a groundbreaking new method to pull out of the air and convert CO2 into solid carbon flakes. Researchers at Australia’s Royal Melbourne Institute of Technology (RMIT) have pioneered an efficient carbon mineralization process using liquid metal catalysts. This technology could provide a sustainable way to capture atmospheric CO2 and safely store it long-term as a stable solid.

Most carbon capture techniques today focus on compressing CO2 gas into a liquid that is injected deep underground. However potential leakage risks make this method less than ideal for permanently storing billions of tons of carbon dioxide. We urgently need innovative solutions to remove and safely store the CO2 already overburdening our atmosphere.

That’s why RMIT’s new mineralization approach to turn CO2 into solid carbon is so promising. It converts greenhouse gases into inert carbon solids at room temperature. This offers a potentially cheaper, more secure form of carbon storage compared to current methods.

RMIT’s method utilizes molten liquid metals to trigger a chemical reaction, transforming gaseous CO2 into solid carbon flakes. This occurs at ambient temperature inside a simple glass tube device. The process works by sending CO2 into the glass tube containing a liquid metal alloy of gallium, indium, tin, and cerium. Running an electric current through the metal accelerates the carbon mineralization reaction.

Carbon steadily accumulates as a layer of solid flakes on the liquid metal surface and the only byproduct of the process is pure oxygen. The flakes are then removed allowing the process to continue indefinitely. Because this process occurs are room temperature, the energy requirements are far lower than other systems.

The researchers experimented with different metal compositions and temperature conditions to optimize the carbon conversion process. Once optimized, the system can continuously pull in and convert atmospheric CO2 into solid carbon without additional heat or pressure.

Unlike underground injection techniques, solid carbon can easily be collected for safe, permanent storage. The carbon solids could even be processed into materials like carbon fiber. And since the process only needs a small amount of electricity and air, it has minimal environmental impact or manufacturing costs.

Turning CO2 into solid carbon could be a more predictable, sustainable and longer lasting approach to carbon capture and storage. The RMIT team is already investigating ways to scale up the liquid metal carbon mineralization method. Adoption by power plants or heavy industry could significantly cut CO2 outputs.

Finding viable ways to remove excess greenhouse gases is critical to slow global warming. Since the Industrial Revolution, over 1.3 trillion tons of carbon dioxide have entered the atmosphere – and the pace is accelerating. New solutions like RMIT’s carbon mineralization technology will be essential to extracting legacy emissions already dangerously heating our planet.

 


 

 

Source   Happy Eco News

Sandvik: Building sustainability into upstream supply chain

Sandvik: Building sustainability into upstream supply chain
Mats W Lundberg is the Head of Sustainability Strategy for Sandvik, which is delivering a strategy to decarbonise raw materials to cut supply emissions

According to figures from Sandvik’s 2022 Annual Report, the business of sustainable manufacturing and mining machinery is booming. The high-tech engineering group supplies new solutions to industries to support their actions in these areas, which will also help them reach their sustainability goals.

However, it’s about more than just machinery as the company is now delivering a new sustainability strategy that will allow further impact in the future while also ensuring commercial success for Sandvik and the users of its solutions.

In September 2023, the company made a significant update to its sustainability shift strategy, which was originally brought to public attention in 2019. This also aligns with how the structure of the organisation has evolved as Sandvik Materials Technology was separated from the Group and listed on Nasdaq Stockholm as a business called Alleima. Alongside this further businesses were acquired by the company, making sustainability a crucial strategy for its growing business.

“We are leaning on the good work that has already been done,” says Mats W Lundberg, Head of Sustainability, Sandvik.

“But the field of sustainability is evolving. It is becoming more mature with new legislation and increasing customer, shareholder and employee expectations. We need to evolve with it and meet the new demands.”

The Key focus areas of Sandvik Group’s sustainability strategy include:

  • Sustainable solutions – An emphasis on closely aligning with customers and their businesses, pioneering change through engineering
  • Ecosystem regeneration – Sandvik’s innovative approach to collaborating with partners throughout the value chain, focusing on revitalising diverse ecosystems, promoting responsible water management, and mitigating pollution
  • Circularity and resource optimisation – The objective encapsulates the aspiration to achieve greater output with fewer resources and to embrace resource efficiency as a fundamental mindset
  • Net Zero Commitment – Sandvik pledges to attain science-based net zero targets, which received approval from the Science Based Targets Initiative in September 2023
  • People and Communities Engagement – Sandvik’s approach to its interactions with the communities in which it operates and provides its products
  • Responsible Business Practices – commitment to conducting ethical and responsible operations across the entire value chain.

 

Sandvik solutions for the sustainable industry

As an organisation that covers a number of industry practices, and is heavily involved in early-stage supply chain activities, Sandvik is digging deeper to create more value for businesses through its mining and machinery solutions. Taking a leading role in decarbonising its supplies from the top, Lundberg explains how the business will generate value across multiple facets.

“We have focused much more on our contribution and how our businesses create value”, says Lundberg. “The new strategy is connected to the Sandvik purpose of advancing the world through engineering, it is forward leaning and shows that Sandvik wants to be a positive driving force.”

Lundbergy is also correct in saying that raw material is one of the primary components of all value chains, whether that involves the production of goods or machinery to ensure services are provided sustainably.

“For any product to be truly sustainable, the entire value chain needs to be sustainable, from raw material sourcing to the manufacturing and usage of the products,” says Lundberg. “And we operate in important and relevant areas here; the mining and processing of raw materials and the machining. If we can contribute with sustainable solutions in these areas we can have a massive impact on sustainability outside of our own operations.”

McKinsey & Company research states the mining industry generates between 1.9 and 5.1 gigatonnes of carbon dioxide equivalent (CO2) every year. These emissions originate from all of the major resources required to sustain consumer product industries, but also those that are critical for providing sustainable electricity and clean-energy-driven solutions to transport. An example of this being the use of cobalt, nickel, and lithium in the electric vehicle (EV) sector as major components in platform batteries.

As the global demand for raw materials grows, the pressure on mining, rock excavation, drilling, and cutting processes is forever impactful to the emissions embedded in their supply chain. Understanding how crucial this stage is to the reduction of overall emissions in the atmosphere, therefore the ability to reach net zero, will allow greater impact on the environment moving forward.

 

 


 

 

Source  Sustainability

GAC and Toyota develop ammonia engine for 90% CO2 reduction

GAC and Toyota develop ammonia engine for 90% CO2 reduction

Chinese state-owned manufacturer GAC has revealed a prototype engine that burns liquid ammonia, which could be an alternative fuel to electricity and hydrogen.

Developed in partnership with Toyota, the new-age ICE takes its inspiration from the maritime and haulage industries, which are exploring ammonia as an alternative to diesel for container ships and trucks.

Although not the first engine to be developed to run on ammonia, this is the first to be proposed for possible use in a passenger car.

At an annual technology presentation, GAC said it had overcome several issues, such as excess nitrogen emissions and an increase in combustion pressure compared with petrol engines.

“We’ve overcome the pain point of ammonia being difficult to burn quickly and put the fuel to use in the passenger car industry,” said Qi Hongzhong, an engineer at the GAC R&D centre in Guangzhou, China.

“Its value to society and for commercial uses are worth anticipating.”

Ammonia is a highly toxic substance used primarily as a fertiliser, but its combustible nature has brought it under the spotlight for future transport needs.

It possesses around half of the energy density of petrol, at 3.6kWh per litre, but emits no carbon, hydrocarbon or CO2 when combusted.

The traditional production method for ammonia is considered energy-intensive, but recent developments have led to small-scale production of ‘green’ ammonia, which uses renewable energy sources for carbon-free output.

More than two-thirds of the world’s annual production of ammonia is used in agriculture as fertiliser. It’s also used as a refrigerant gas and in the manufacturing of plastics, textiles, explosives and pesticides.

 

 


 

 

Source  Autocar

 

Algae-Based Ice Cream, A Sustainable Frozen Treat

Algae-Based Ice Cream, A Sustainable Frozen Treat

With the worry about climate change and the shift towards more sustainable diets, Algae-based ice cream, we’ve seen a lot of changes within the food industry over the past few years, from beyond meat to a rise in non-dairy milk such as oat, almond, soy, and more. The newest trend that will be hitting the grocery store shelves near you is algae based ice cream.

That’s right, Sophie’s BioNutrients, a food tech company developing 100% plant-based and sustainable alternative protein for the industry, is now developing a vegan ice cream made from chlorella protein. Chlorella protein is a pure protein flour that is made from microalgae. The company partnered with the Danish Technological Institute to make this algae-based ice cream.

Making the chlorella protein involves naturally cultivating chlorella vulgaris (a species of green microalga). The microalgae are grown using bioreactors, limited amounts of water, and local food waste (including spent grains or okara, waste from tofu makers). The chlorella is harvested within three days in a protected environment. The algae-based ice cream is developed by mixing the chlorella protein with sugar, coconut oil and other ingredients. Not only does this algae-based ice cream mimic the natural texture, but it also holds a complete nutrition profile. This algae-based ice cream is high in B12 and iron. Who knew that ice cream could be good for you? Furthermore, it can also be made into various different flavours of vegan ice cream.

Unlike lactose ice cream, whereby dairy cows need at leave 0.7m of feed space, cultivating microalgae uses about 0.02 hectares of space. The microalgae grown by Sophie’s BioNutrients also don’t require fertilizers, herbicides, antibiotics or other products to make the protein.  Sophie’s BioNutirent is also committed to enabling a circular economy by finding a purpose for spent grains (waste from breweries) and molasses (waste from sugar refineries)

Sophie’s Bio Nutrients has also recently teamed up with NewFish, a biotech and commercialization venture that ferments New Zealand microalgae to create new sustainable foods. The two companies are working to advance microalgae protein research and product development. Together, they are working to overcome the challenges of obtaining sufficient microalgae strains and scaling production capacities. The companies hope to bring enough global supply to increase the availability of stainable foods made from microalgae.

Besides the nutrient benefits that microalgae provide, many food companies are looking to utilize algae because of its abundance worldwide. It can be found in various environments worldwide, including salt, brackish waters, and snow. Marine algae also don’t require soil, irrigation or fertilizer; their cultivation doesn’t compete with agriculture for arable land and freshwater. Furthermore, cultivating algae doesn’t lead to fertilizer runoff. It also grows ten times faster than conventional crops. Experts say that using microalgae could potentially increase global food production by over 50%. It not only provides omega-3 fatty acids that can be found in fish, but it also has minerals and amino acids that are often missing in vegetarian diets.

Another significant benefit of using algae to produce food is that microalgae are known as the most efficient biological sequesters of carbon dioxide. It is said that when used in bioreactors, algae is 400 times more efficient at removing CO2 from the atmosphere than a tree. The algae require carbon dioxide to grow, which provides a win-win solution for everyone.

Thinking about algae-based ice cream may not be the most appetizing thing we can think of, but what does it matter when it’s crushed into a powder and mixed in with other ingredients? If this is the way to sustainable foods, then I think we are on the right track. I look forward to seeing the algae-based ice cream on the grocery store shelves soon.

 

 


 

 

Source  Happy Eco News

TreeTote: The Tote Bag That Saves +1100 Liters of Water

TreeTote: The Tote Bag That Saves +1100 Liters of Water

Did you know that a cotton tote bag consumes +1141 liters of water to be produced?

Cotton tote bags have flooded the market. Originally manufactured to combat single-use bags, this bag has become a trendy accessory. Brands have turned it into a true cult accessory. Yet, cotton tote bags are an ecological disaster. Cotton production involves astronomical amounts of water and pesticides, leading to soil drought and the development of dead marine zones.

In recent years, the “ fiber gap” phenomenon has appeared. Demand for cotton continues to rise while supply decreases. The consequence is skyrocketing prices. Natural fibers like cotton are increasingly being replaced by fibers derived from fossil resources. Cotton is predominantly produced in Asia and requires intercontinental transportation. Off-centre cotton supply chains release large amounts of CO2.

Organic growing systems are better for the soil as they maintain a higher soil quality, which reduces the runoff into local rivers. The soil is also much more resilient and can withstand extreme weather. Healthy soil acts like a sponge – it can absorb and retain water for longer periods, including droughts. This leads to a much lower consumption of organic cotton though it remains 90% higher than our lyocell wood fibre.

The Tree Tote

The TreeTote, a 100% wood fiber tote bag, was developed to address these challenges. Our totes are made from 100% European production. We keep our supply chain as close as possible to reduce CO2 emissions related to transport while producing a socially responsible and affordable bag. Our supply chain is exclusively European and includes three streams: Made in Europe, Made in the Alps and Guaranteed French Origin. The entire supply chain is traceable via the Respect Code on all our bags. By scanning the QR codes on our bags, you will see the entire journey from research to development, raw materials, production, distribution and use.

The prime material for our bags is timber, and they are made from 100% wood fibre from sustainable sources. Of the tree species used in the sourcing of wood for the TreeTote, the main contender is Beech. Beechwood availability is increasing as forests are being returned to a more natural species mix. Rising temperatures are also increasing its growth rate. This beech wood comes purely from PEFC/FSC-certified sources.

The material is generated by thinning or damaged wood left over from other operations. Almost all of the wood used to produce the TreeTote comes from Austria, where the fibre is produced. The rest comes from neighbouring countries, minimising transport and therefore the carbon emissions that come with it. Transport is highly optimised to keep our carbon footprint to a minimum. Shared transport is used whenever possible and, for longer distances, low-emission transport such as trains is prioritised.

Over 99% of the solvent used is recovered and recycled, and water consumption is reduced drastically. Even sustainable bags use plastic thread and tags, which are cheaper and widely available. We stray from plastic and only use TENCEL accessories to make our TreeTote 100% wood fiber. We also don’t add any extra mechanical or chemical steps to the line after weaving, which is rare in textile production, to save energy and water.

Regarding the water used to produce our tote bag, we achieved a 90% reduction in water consumption. If we compare our tote bag to a conventional cotton bag, which uses about 1200L of water, we reduce consumption by 99%. In the case of organically grown cotton, the reduction reaches 90%. Over 39,158,595 liters of water have been saved by TreeTote so far as a replacement for cotton bags.

Because dyeing, and the processes that come with it, have an enormous impact, especially due to water use for the dying itself and the washing steps that follow. We, therefore, choose to work with the fabric in its natural white colour.

OEKO-TEX® STANDARD 100 is one of the world’s best-known labels for textiles tested for harmful substances. It stands for customer confidence and high product safety. TreeTote has been awarded Class I certification, complying with the label’s strictest requirements.

After using the tote bag as many times as possible, we recommend recycling it with textiles as this is the highest value disposal. The Tree Tote is also 100% compostable.

 

 


 

 

Source   Happy Eco News

Candy Bar Wrappers Go Plastic Free

Candy Bar Wrappers Go Plastic Free

For the first time since its launch in 1936, Nestlé is changing the packaging of their famous Mars candy bar wrapper for a more environmentally friendly alternative.

Traditionally, candy bar wrappers are made out of a combination of aluminum and plastic. These materials are difficult to recycle because of how hard it is to separate the two materials. Moreover, the plastic is not biodegradable and can take 10-20 years to decompose. This is at the risk of pieces remaining in the environment longer than that. At the end of their short life, candy bar wrappers will inevitably end up either in landfills or the environment.

New Jersey based TerraCycle has implemented a candy bar wrapper recycling program to address this problem, collecting used wrappers from individuals and institutions.

Candy bar wrappers are recycled at TerraCycle through a process called mechanical recycling. This process involves shredding the wrappers into small pieces, washing them to remove any contaminants, and then melting them down to create new plastic pellets. These pellets can then be used to make new products, such as benches, flower pots, or playground equipment.

TerraCycle offers a variety of recycling programs for candy bar wrappers. These programs are available to individuals, schools, businesses, and organizations. To participate in a program, the only cost is to purchase a collection kit from TerraCycle. The collection kit includes a shipping label and a prepaid shipping box.

Once you have purchased a collection kit, you can collect candy bar wrappers. You can collect wrappers from your own home, school, or workplace. When the collection kit is full, you can ship it back to TerraCycle for recycling.

Nestlé Steps Up

Nestlé is taking the problem of candy bar wrapper waste one step further by completely changing what their chocolates are packaged in. The company is piloting a program to wrap its Mars bars in recyclable paper.

The company also announced that it would be switching the plastic packaging on KitKat bars to 80% recycled plastic, allowing them to be recycled at supermarkets across the UK or put in household recycling bins in Ireland. This is an initiative that could save 1900 tonnes of CO2 annually.

In addition, the company is looking to explore new types of packaging. Nestle is investing hundreds of millions of pounds to redesign thousands of types of packaging. This investment will be put towards meeting its goal of reducing the use of virgin plastics by one-third by 2025. The company also plans for over 95% of its plastic packaging to be designed for recycling by 2025.

Nestlé’s Institute of Packaging Science has been working since 2019 to develop the next generation of packaging materials. In addition to recyclable packaging materials, they are looking at developing refillable or reusable packaging and how to incorporate compostable and biodegradable materials. The Institute’s strategy focuses on five pillars, all of which are linked to reducing waste:

  1. Reducing the use of plastic packaging material
  2. Scaling reusable and refillable systems
  3. Designing better packaging materials
  4. Supporting infrastructure to help make recycling easier
  5. Shaping new behaviours

Nestlé is a global food and beverage company that has been criticized for its water bottling operations. Critics argue that Nestle is extracting too much water from local communities, often with no meaningful compensation to local jurisdictions and areas already facing water shortages. Some have argued that the company doesn’t sell water; the company sells single-use bottles. Bottles that contribute to pollution and environmental damage.

The need for bottled water, is of course, a marketing ploy. Critics argue that Nestle’s marketing campaigns make bottled water seem like a healthier and more convenient alternative to tap water, even though there is no scientific evidence to support this claim.

The plastic-free Mars bars will be available at 500 Tesco stores in the UK for a limited time.

 

 


 

 

Source  Happy Eco News

New Ocean Carbon Removal Tools Developed

New Ocean Carbon Removal Tools Developed

What is Ocean Carbon Removal?

Ocean carbon removal is a process that aims to remove excess carbon dioxide from our oceans. As we all know, the ocean plays a critical role in regulating our planet’s climate by absorbing large amounts of CO2 from the atmosphere. However, this absorption has a limit, and as we continue to emit more and more greenhouse gases into the atmosphere, the ocean’s ability to absorb CO2 is reaching its threshold.

The process of removing carbon dioxide involves capturing it directly from seawater or indirectly through biological processes, such as photosynthesis carried out by marine organisms like phytoplankton. Once captured, it can be stored permanently in deep-sea sediments or used for various industrial purposes.

Ocean carbon removal has gained significant attention recently due to its potential for reducing atmospheric CO2 levels and mitigating climate change impacts on marine ecosystems. Additionally, this solution can generate ocean-based carbon credits, which provide financial incentives for companies investing in sustainable practices that reduce their carbon footprint.

Ocean carbon removal offers promising solutions for mitigating climate change while protecting our oceans’ health but also requires careful evaluation of its environmental risks and economic feasibility before implementation at scale.

The company Planetary Technologies has released an innovative ocean-based carbon removal protocol. The protocol aims to provide a standard for measuring and verifying the effectiveness of ocean-based carbon removal projects.

The technology adds a mild alkaline substance to the ocean, which reduces acidity and converts dissolved carbon dioxide into a salt that remains dissolved in the ocean for up to 100,000 years. This process allows for more atmospheric carbon dioxide to be absorbed by the ocean.

The company has been testing its technology in the U.K., Canada, and the U.S. and claims it could remove up to 1 million tonnes of carbon dioxide from the atmosphere by 2028 while restoring marine ecosystems. The publication of the protocol is a major step forward for the nascent market for marine carbon removals.

 

How does it work?

Ocean carbon removal is a process that involves removing carbon dioxide from the Earth’s atmosphere and storing it in the ocean. The process works by using natural or artificial processes to convert atmospheric CO2 into dissolved bicarbonate ions, which then sink and become trapped in deep-ocean sediments.

Natural processes include photosynthesis by marine organisms such as phytoplankton, while artificial methods involve injecting CO2 directly into seawater or using specialized equipment to capture CO2 from the air.

One of the key benefits of ocean carbon removal is its potential to mitigate climate change. By removing excess CO2 from the atmosphere, we can slow down global warming and reduce its impacts on our planet.

However, there are also concerns about how this technology might impact marine ecosystems. Injecting large amounts of CO2 into seawater could alter pH levels and affect marine life while capturing too much atmospheric CO2 could disrupt natural carbon cycles.

Ocean carbon removal has enormous potential for reducing greenhouse gas emissions and mitigating climate change. However, careful planning and monitoring will be necessary to ensure that these technologies are deployed safely and sustainably.

 

What are the benefits?

The benefits of ocean carbon removal are numerous and far-reaching. One of the primary benefits is that it provides a solution to one of the biggest challenges facing our planet today: climate change. By removing carbon from the atmosphere, we can slow down global warming and reduce its devastating effects.

In addition, ocean carbon removal has a lower environmental impact than other methods, such as land-based solutions or direct air capture. This is because oceans cover more than 70% of the Earth’s surface, making them an ideal location for large-scale carbon sequestration projects without disturbing natural habitats or ecosystems.

Another benefit is that it can create new economic opportunities in coastal communities through jobs related to monitoring, maintenance, and technology development. Furthermore, companies can earn ocean carbon credits by participating in these programs, encouraging investment in sustainable practices while funding future initiatives.

Ocean carbon removal helps protect marine life by reducing acidification levels caused by excess CO2 emissions. Acidification harms many marine species, including coral reefs which support millions of people worldwide through fishing and tourism industries.

 

What are the Concerns?

Despite the numerous benefits of ocean carbon removal, there are also concerns that need to be addressed. One of the primary concerns is the potential environmental impact on marine ecosystems. Large-scale ocean carbon capture technologies deployment may interfere with fish habitats and disrupt food chains.

Another concern is the lack of regulatory frameworks for validating and verifying the efficacy of ocean carbon credits. With no established standards in place, it becomes difficult to ensure transparency and accountability in measuring how much carbon has been removed from oceans.

Additionally, some experts warn that relying on carbon removal could divert attention away from more pressing climate solutions, such as reducing greenhouse gas emissions at their source. Without a comprehensive approach to addressing climate change, we risk overlooking other important factors contributing to global warming.

As we continue exploring ways to reduce our impact on the planet’s environment, it’s essential we address these concerns head-on by conducting thorough research and creating clear regulations around monitoring the effectiveness of this promising new technology.

 

A Piece of the Big Picture

The release of Planetary Technologies’ ocean-based carbon removal protocol is a significant milestone in the fight against climate change. The ability to remove carbon dioxide from our oceans not only helps reduce greenhouse gas emissions but also has positive effects on marine life and ecosystems. While there are concerns about potential environmental impacts and costs associated with this technology, it is important to continue exploring innovative solutions like these to address global warming.

Furthermore, individuals can get involved by supporting research efforts or advocating for policies that promote ocean-based carbon capture and storage projects. Ultimately, reducing our carbon footprint requires collective action at all levels – from governments and businesses to individuals.

By working together towards a sustainable future, we can protect our planet’s health while creating new opportunities for economic growth and innovation. Ocean carbon removal is just one piece of the bigger picture, but an important one in our journey towards a greener tomorrow.

 

 


 

 

Source Happy Eco News

Carbon Dioxide Livestock Feed

Carbon Dioxide Livestock Feed

Researchers may have discovered a protein substitute for livestock feed that is significantly less environmentally damaging than corn and soybean production. The researchers have explored the concept of synthetic nutrition, which means essential nutrients can be produced artificially, efficiently and with a small footprint. They have turned greenhouse gas emissions into an ingredient that could be used for carbon dioxide livestock feed.

The researchers captured carbon dioxide and combined it with renewable hydrogen to make methanol powered by wind and solar energy. With the material created, they applied a series of enzymes into an eight-step process which, after several combinations, created an amino acid called L-alanine. This amino acid makes protein and is an energy source for muscles and the central nervous system. It also strengthens the immune system and helps the body use sugars.

This isn’t the first time researchers have been able to transform carbon dioxide into food products. Researchers have found a way to convert carbon dioxide into starch that typically comes from corn which requires a lot of land, water and fertilizer to grow. The process they used was 8.5 times more efficient than photosynthesis, which the corn plant uses to convert CO2 and sunlight into carbs. Moreover, their process took only four hours compared to the 120 days required for corn to grow and generate starch.

These new processes of using carbon dioxide to minimize the use of corn and starch will bypass the problem of repurposing a climate-damaging waste stream. Although there are other ways to synthesize L-alanine protein, they require emission-intensive processes that require petroleum products. Using existing carbon dioxide will reduce the need for emissions and harmful products. It also decouples production from the land because less land will be needed to produce the same amount of L-alanine. It will also use significantly less energy as the energy required will be taken from renewable sources.

The demand for animal protein continues, so the need for carbon dioxide livestock feed will also rise. Researchers are developing solutions that utilize harmful and excess emissions that can be transformed into food for these animals. These new solutions will allow us to move away from excess land and water use and monocultures and help us create more biologically diverse environments.

 

 


 

 

Source Happy Eco News

4D-Printed Seeds That Can Study the Soil

4D-Printed Seeds That Can Study the Soil

Soil plays an important role in keeping our planet healthy. Soil filters our water, provides plants with nutrients, and provides a home for billions of organisms. Moreover, the soil is an important ingredient for growing food, and it protects us against flooding and combats drought. Because soil is made in part of broken down plant matter, they contain a lot of carbon that the plants took in from the atmosphere. The capacity of carbon that soil can hold depends on climate, temperature, rainfall, soil type and depth.

Soil is under threat due to rising temperatures and biodiversity loss due to climate change. Half of the topsoil in the world has been lost in the last 150 years due to erosion. These impacts include compaction, loss of soil structure, nutrient degradation and soil salinity. Soil nutrient loss is recognized as among the most critical problems at a global level for food security and sustainability.

Because many of the effects of climate change on soil happen underground, it can be difficult to study the impacts. Scientists from the Bioinspired Soft Robotics Lab in Genoa, Italy, have developed a solution to this problem. They have designed the first 4D-printed seed-inspired soft robot. The robotic seed mimics the movement and performance of a natural seed. The seed is said to help act as a sensor for monitoring pollutants, CO2 levels, temperature and humidity in the soil.

The structure of the South African geranium inspires the artificial seed. The seeds can change shape in response to how humid their environment is. The seed can autonomously move around a terrain surface and penetrate the soil. Here, the seed can explore the soil and penetrate inside fractures, extracting energy from the environmental humidity changes. The seeds can find a home for themselves by expanding and shrinking due to changes in the water content of the air.

The seed was created using 4D printed structures as they can create dynamic morphological changes under environmental stimuli. Additionally, these structures can be programmed to reshape and perform work for any type of scenario. The seed is also strong enough to lift about 100 times its own weight. The seeds are made out of biodegradable polymers, which are activated using oxygen plasma to increase water-attracting abilities. The scientists chose these materials because they absorb and expand when exposed to humidity.

This invention could be a battery-free wireless tool for environmental topsoil monitoring. It could be a low-cost system to collect soil data across remote areas without monitoring data. It is also a relatively non-invasive way to study and monitor the soil. And the role of biodegradable materials and eco-friendly processing is fundamental for sustainable and green robotics to avoid the dispersal of new waste in natural environments. This study could be an inspiration for other researchers looking to study hard-to-reach areas that are at risk due to climate change.

 

 


 

 

Source Eco Hero News