Search for any green Service

Find green products from around the world in one place

How the World’s Whitest Paint Can Reduce Energy Use

How the World’s Whitest Paint Can Reduce Energy Use

Scientists have long understood the climate and energy efficiency benefits of reflective white paints. Now, engineers at Purdue University have created the world’s whitest paint that reflects more than 98% of sunlight, leaving all other paints appearing grey by comparison. As demand for sustainable solutions grows globally, this innovation promises greener buildings and cities by passively lowering carbon emissions and energy use.

The world’s whitest paint formulation was reportedly completed in early 2021. While initially produced for research applications at Purdue, press releases indicate Perdue intends to optimize and commercialize the product for widespread availability as early as late 2023. This rapid early adoption timeline speaks to the hunger for market-viable incremental gains in cooling efficiency as global temperatures continue rising.

With the formulas and methods published openly, it remains to be seen whether alternate whitest paint variants may emerge from other research teams or commercial producers, sparking a global race toward passive cooling innovation. Even moderate cooling boosts from white paint could incentivize entities like major cities to begin budgeting for wide-scale reflective surface projects within the decade.

Applying the world’s whitest paint to building rooftops and envelopes can reduce their surface temperatures by over 20°C compared to conventional options. By reflecting rather than absorbing heat, the broad deployment of the world’s whitest paint could mitigate the phenomenon of urban heat islands, where dense cityscapes absorb and radiate increased warmth. Modeling suggests summer city temperatures could decrease by over 2°C using this approach.

The development of a highly reflective and renewable calcium carbonate-based paint offers an innovative solution to excessive urban heating. As climate change brings more frequent and intense heat waves, the cooling potential of reflective white surfaces will grow increasingly impactful. Deploying this paint across a city’s building stock can lower indoor and outdoor temperatures while cutting air conditioning demands as well. Transitioning rooftops from heat-trapping dark colors to the whitest paint formula could become a climate resilience strategy for communities worldwide.

Looking beyond buildings, custom reflective paints and paving materials show similar potential for cooling everything from vehicles to sidewalks to transit shelters. An urban landscape covered with maximum heat reflection could compound cooling benefits compared to white rooftops alone. More research into expanding high-albedo surfaces across the built environment will further quantify the associated quality of life and emissions reductions. Simple shifts in surfaces and materials at scale could make future cities markedly more livable.

The world’s whitest paint keeps surfaces cool to the touch, even in the hottest environments. Compared to the air temperature at mid-afternoon, a surface painted with the world’s whitest paint can be several degrees cooler than regular white paint. At night, the difference is even more pronounced, up to 19 degrees.

The corresponding drop in air conditioning electricity demand is equally significant from an emissions reduction perspective. Studies by the US Environmental Protection Agency show cool roofs can reduce a building’s annual air conditioning requirements by 10-30%. The increased grid energy efficiency will provide critical flexibility for integrating renewable energy sources as part of essential decarbonization efforts across the power sector.

While the world’s whitest paint’s exceptional solar performance will justify further optimization before mass production, its imminent commercial arrival heralds a shift in leveraging incremental materials innovation. The compound benefits of collective small-scale action represent meaningful progress, offering pragmatic climate hope. If cool paint alone makes summers more bearable, our combined creative efforts focused first on the possibly more than the ideal may yet brighten prospects for sustainable living.

With vision and patience, Perdue’s ultra-white paint is but a glimpse of a future where green cities are dotted with communities that thrive in the hotter world they’ve warded off, one roof at a time.

 

 


 

 

Source  Happy Eco News

Meta Powers Towards Net Zero with Carbon Removal Projects

Meta Powers Towards Net Zero with Carbon Removal Projects

Any organisation worth their sustainability salt knows that reaching net zero emissions in operations alone is not enough

Decarbonization must extend beyond offices and factories to include Scope 3, from the emissions caused by suppliers to those created by employees.

For Meta, the world’s fifth-biggest tech company, this challenge is being met with ambitious targets and bold, meaningful action.

Having already hit net zero emissions in global operations in 2020, the social media giant now has its sustainability sights set on achieving net zero value chain emissions by 2030.

This is quite the challenge, given 99% of Meta’s carbon footprint came from Scope 3 in 2022 – and this continues to rise.

“We know that reaching net zero emissions across our value chain will not be an easy task,” Rachel Peterson, Vice President of Data Centre Strategy at Meta said in the company’s 2023 Sustainability Report.

“Right now, our Scope 3 emissions are increasing and will continue to do so as we work to support the global demand for the services we provide.”

 

Meta Tackles Hard-to-Abate Sectors with Carbon Removal Projects

Meta acknowledges that reaching this goal requires a significant shift in how it builds infrastructure and operates its entire business – and the 20-year-old company is prioritising efficiency and circularity in its business decisions and embracing low-carbon technology to operate with a lower emissions footprint.

For example, through its supplier engagement programme, Meta is working to decarbonise its supply chain and enable at least two-thirds of its suppliers to set SBTi-aligned reduction targets by 206.

However, there are some emissions from hard-to-abate sectors the Facebook owner knows will be difficult to reduce by the end of the decade.

And so to tackle this, Meta has turned to carbon removal projects, the third pillar in its high-level emissions reduction strategy.

In a white paper outlining its Net Zero Strategy, the company says investing in value chain emissions reductions projects is necessary to address sources it can’t directly influence – like companies or processes used to extract and process the copper in data centre hardware or mechanical electrical equipment.

“These projects offer a significant opportunity to decarbonise our business at pace and scale require to achieve our 2030 reduction target,” the paper states.

For Meta, a diverse approach to carbon removal that includes both nature-based and technological approaches is crucial – not only to ensure near-term climate impact but to support carbon removal solutions for the future.

This strategy involves the purchase of credits from projects that align with Meta’s principles, from reforestation to investment in direct air capture technology.

 

Nature-Based Solutions in Mitigating Carbon Emissions

Since 2021, the social media giant has supported numerous nature-based carbon removal projects, from Australia to Kenya, including increasing forest carbon stock of community ejido forests in Oaxaca and increasing stored carbon via protection of forests that provide habitat for mitigating salmon in California.

And demonstrating its continued commitment to investing in nature-based solutions to mitigate carbon emissions, Meta recently signed a major carbon credits deal for 6.75 million carbon credits with Aspiration, a leading provider of sustainable financial services.

These credits hail from a myriad of ecosystem restoration and natural carbon removal approaches, including native tree and mangrove reforestation, agroforestry, and the implementation of sustainable agricultural practices.

Meta’s role in the voluntary carbon market extends beyond purchasing credits from projects to supporting new project development through financing and encouraging the evolution of standards that bring more certainty to the market.

Among the ways Meta is driving development in the sector is through collaborative action that will “aggregate the resources of multiple companies to create rapid change at scale”.

This includes a collaborative pledge to develop carbon projects that centre Indigenous leadership.

Through 1t.org, the National Indian Carbon Coalition and Meta have pledged to support and promote a model of carbon projects that centre on the leadership, traditional ecological knowledge, and vision of Indigenous Peoples for themselves and their land.

Among other collaborative projects:

  • Participation in the Business Alliance to Scale Climate Solutions (BASCS), which provides a platform for businesses and climate experts to meet, learn, discuss and act together to improve climate solutions.
  • Collaboration with the World Resources Institute to develop a method to map forest canopy height↗ at individual tree-scale using a new Meta AI training model. We have mapped forest canopy in California and São Paulo, Brazil, and are making the data public and freely available

 

 

Meta’s Role in Scaling Carbon Removal Technologies

In further driving development in the sector, Meta joined forces with other big tech companies in 2022 to accelerate the development of carbon removal technologies by guaranteeing future demand.

While some say focusing on carbon capture is a distraction to the real goal of reducing greenhouse gas emissions, Meta argues that both emissions reductions and carbon dioxide removal are needed.

And climate science backs this up.

Scientists say removing the carbon emissions that we have already pumped into the atmosphere is necessary if we are to avoid the 1.5-degree rises in global temperature set out in the Paris Agreement.

Launched in 2022, Frontier is a US$925 million joint commitment between Meta, Stripe, Shopify, McKinsey Sustainability and Alphabet – more recently bolstered with four new companies – Autodesk, H&M Group, JPMorgan Chase and Workday – committing a combined US$100 million.

Frontier helps its member companies purchase CO2 removal via pre-purchase agreements or offtake agreements. The goal is to spur the development of a new industry by providing a novel source of funding that isn’t based on debt or equity investments, but on actual product purchases before the technology is fully available at scale.

So far, Frontier has spent $5.6 million buying nearly 9,000 tonnes of contracted carbon removal from 15 different carbon dioxide removal startups.

Among these, RepAir uses electrochemical cells and clean electricity to capture carbon dioxide from the air, while Living Carbon is a synthetic biology startup working on engineering natural systems to remove carbon dioxide.

With this strategy, Meta is helping to expand the voluntary carbon market, overcome barriers to scale, and at the same time achieve its own ambitious net zero goals.

 

 


 

 

Source

Technology Helps City Air Purifiers Run at Scale

Technology Helps City Air Purifiers Run at Scale

As urban air pollution increases globally, cities of all sizes are getting creative with technologies to literally filter out the smog. In 2017, China unveiled what it dubbed the “world’s biggest city air purifier” – a nearly 100-meter tall tower in northern China designed to reduce air pollution. While its effectiveness has limits, the towering structure demonstrates the growing interest in large-scale air filtration. Beyond this eye-catching prototype, cities worldwide are testing various innovative technologies to clean their skies.

In Xian in Shaanxi province, residents breathing some of China’s most polluted air are getting a reprieve thanks to their new neighbor – a 60-meter tall city air purifier tower. The structure’s interior has multiple filtration layers to catch particulates as air passes. An interior glass enclosure helps contain airflow so polluted air can fully pass through the system.

Since becoming operational in 2017, the city air purifier tower has noticeably cut harmful PM2.5 particles in the surrounding 2.6 square mile area. Cities like Xian regularly suffer from winter smog, blanketing entire regions. While not eliminating pollution, the tower provides cleaner air in its immediate vicinity.

The concept behind the city air purifier is similar to industrial scrubbers cleaning factory exhaust. Scaling up the technology, its designers hope such towers could eventually clean the air across entire cities. Of course, a limitation is that people must be close to the towers to benefit. And the structures are costly to build and operate. Still, China’s prototype tower has spurred interest in exploring larger-scale air filtration to supplement other anti-pollution measures.

While China goes big, other pollution fighters use buildings as filters. High-efficiency particulate air (HEPA) filtering systems installed in central air ventilation systems are increasingly common. HEPA filters use densely packed fibers to catch over 99% of particulates, pollen, and other pollutants. Similar city air purifiers at the street level are also possible. Smog halting benches designed in Paris contain a HEPA filter, sucking in air as pedestrians sit.

Living walls of plants built onto building exteriors also naturally filter gases. One study found adding 172 square feet of plants per person in London could remove all PM10 particulates. Mosses are especially effective pollutant absorbers.

Specialized building materials also react with and neutralize air pollutants when exposed to light. Concrete can be coated with titanium dioxide, which oxidizes nitrogen oxides and volatile organic compounds into safer compounds. Hydrophilic coatings help droplets absorb particulates.

Researchers are working on incorporating similar photocatalysts into road asphalt. These chemically treated roads could reduce tons of air pollutants daily if widely adopted.

Green algae may also hold the potential for clean city air through bioreactors. Experimental units in Hamburg use circulated airflow to filter exhaust fumes through an algae facade. The algae neutralize airborne pollutants while multiplying and producing biomass that can be harvested for biofuels.

What works in lab prototype city air purifiers, however, often proves challenging to execute citywide. Costs, aesthetics, and maintenance frequently impede adoption. Visible additions like green roofs require public acceptance. Passive approaches like photocatalytic paints, while hidden, need reapplication over time.

Scaling across metro areas also poses hurdles. Shanghai officials planned a network of small purifier towers across the city, but only a few ever materialized. Even proven concepts like roof gardens struggle to spread, as few developers want to trade rentable space for plants.

While technical solutions can filter pollution already in the air, reducing emissions at the source remains vital. You can’t plant your way out of bad air.

Despite obstacles, experts forecast continued innovation and cost reductions, improving feasibility. Market growth also brings economies of scale. Global green walls are forecast to be a $7.5 billion industry by 2030. Modular green facades and roofs can now be delivered as easy-install kits.

Policy measures like subsidies, tax incentives, and mandates will likely be needed, however, to spur mass adoption. Many cities now require mechanically ventilated buildings to install city air purifiers through filtration. While these are intended to protect building occupants from pathogens such as coronavirus, they also have the net effect of reducing particulate and other toxins from the air. Building codes could similarly require passive air-cleaning coatings and surfaces.

Though major pollution sources like autos require parallel efforts, creative technologies can help cities breathe easier. China’s massive air purifier may be just the start of a cleaner air movement. The scale of the air pollution crisis demands big, visible solutions to jolt public awareness.

While towering city air purifiers or algae bioreactors may capture headlines, addressing urban air pollution requires a multi-faceted approach. Technical fixes can target existing pollution, but cities must also prevent pollution at the source by transitioning to cleaner energy, transport, and waste systems.

Public awareness and policy measures are equally vital to drive large-scale adoption of innovative city air purifier concepts. Financial incentives, tax breaks, and inclusion in building codes could help technologies like photocatalytic coatings and surfaces become mainstream. Grassroots activism also plays a crucial role in keeping air quality high on urban agendas.

Though critical, bold engineering feats like China’s massive city air purifier tower should be viewed as supplementary elements of long-term solutions rather than silver bullet fixes. As much as cities need breathable air, those relying on singular grand gestures risk short-changing public health. Lasting solutions require a patient, systematic transition toward deeper sustainability.

Still, visionary projects like China’s offer hope by viscerally demonstrating the scale of what’s possible. Initial results and statements suggested the tower can produce over 10 million cubic meters of clean air daily. If we were to use this figure as a rough estimate, it would translate to about 3.65 trillion cubic meters of clean air annually, having a positive effect on the health of those living near it.

When paired with holistic strategies to address transport, energy, and waste systems, creative pollution mitigation technologies can steadily help clear the air. Cities have a responsibility to use every tool and innovation at their disposal to ensure citizens can simply breathe clean air.

 

 


 

 

Source  Happy Eco News

Low Carbon 3D Printed Homes – Lower Cost too

Low Carbon 3D Printed Homes – Lower Cost too

An emerging application of 3D printing technology is fabricating entire homes through additive manufacturing. Early adopters demonstrate that 3D printing residential buildings carry significantly lower embedded carbon than conventional construction methods.

By optimizing materials and printing processes, 3D home printing could provide affordable, efficient, low-carbon housing to growing populations if adopted at scale.

Also known as additive manufacturing, 3D printing builds structures by depositing materials layer by layer according to digital models. Concrete is typically extruded through a moving print nozzle onto a substrate, hardening upon deposition to gradually form walls and roofs of low carbon 3D printed homes.

Companies pioneering low carbon 3D printed homes include Icon, SQ4D, and Mighty Buildings. Their printed concrete or polymer designs streamline manual labor of framing, insulation, and finishing. Architectural designs are also easier to customize versus cookie-cutter manufactured units.

But the sustainability benefits are among the most significant advantages over current construction. Architect Sam Ruben, an early adopter of 3D printing for eco-homes, states that 3D printing can reduce lifecycle emissions by over 50% compared to standard building techniques.

Part of the savings comes from more efficient material usage. Conventional construction methods are wasteful, generating excessive scrap materials that go to landfills—3D printing deposits only the needed amount layer-by-layer, eliminating waste.

Printing also allows easier integration of recycled components like crushed concrete aggregate into prints, diverting waste streams. And lightweight printed structures require less embedded energy to transport modules. Optimized print geometries better retain heat as well.

But the biggest factor is speed – printed homes can be move-in ready in days rather than weeks or months. A standard SQ4D home prints in just 8-12 hours of machine time. Accelerated production means less energy consumed over the total construction period.

And speed has financial benefits, too, reducing the logistical costs of prolonged projects. Combined with simplified labor, 3D printing can cut estimated construction expenses up to 30%. Those cost savings make printed homes more accessible to low-income groups while stimulating large-scale adoption.

To quantify benefits, Mighty Buildings completed a life cycle assessment comparing their printed composite polymer dwellings against conventional homes. They estimated their product cut emissions by over one-third during materials and construction. Waste production dropped by over 80%.

Such data helped the company achieve third-party verified EPD declarations certifying their low carbon 3D printed homes. Mighty Buildings believes printed homes could eliminate over 440 million tons of carbon emissions if comprising 40% of California’s housing needs by 2030.

Despite advantages, barriers remain to limit widespread 3D printed housing. Printed buildings still require finishing like plumbing, electrical, windows, and roofing. Developing integrated printing around and including those elements will maximize benefits.

High upfront printer costs also impede adoption, though expected to fall with scaling. And building codes need updates to cover novel printed structures despite proven duribility. Some jurisdictions like California are pioneering efforts to add low carbon 3D printed homes as approved models in housing codes.

But if technical and regulatory hurdles are resolved, additive construction could offer meaningful emissions cuts. With global populations projected to add 2 billion new urban dwellers by 2050, low carbon 3D printed homes may become a go-to sustainable building technique, especially in growing developing countries.

The urgent need for dense, low-carbon housing solutions to accommodate global populations makes 3D printing’s advantages stand out. Printed homes advance from gimmick to viable strategy against climate change.

Eco-conscious homebuyers on a budget have a new choice – low carbon 3D printed homes made from low-carbon cement. A new housing tract in Round Top, Texas has introduced small dwellings printed using concrete that produces just 8% of the carbon emissions of traditional Portland cement manufacturing.

Habitat for Humanity last year unveiled its first low carbon 3D printed home in Williamsburg, Virginia. The project represented Habitat for Humanity’s first completed 3D printed home in the country.

By combining 3D printing techniques with more sustainable cement mixtures, homebuilders can reduce the carbon footprints of affordable printed housing even further.

 

 

 


 

 

 

Source  Happy Eco News

ECONYL Sustainable Nylon Alternative

ECONYL Sustainable Nylon Alternative

Nylon is the stretchy material found in underwear, hosiery, activewear, swimwear, and even umbrellas. It was the first fabric to be made in a laboratory. Nylon is made out of crude oil and is very energy-intensive to produce. Producing nylon creates nitrous oxide, which is 300 times more potent than carbon dioxide. Large amounts of water are needed to cool the fibres along with lubricants, which can become a source of contamination. Moreover, nylon is not biodegradable. If it makes its way into the oceans, it will degrade to thin fibres and small particles that wildlife can digest.

Many designers and fashion brands want to use a sustainable nylon alternative in their garments, but it is difficult to find them. One new sustainable nylon alternative is called ECONYL, a trademark of the Italian plastics company Aquafil. Sustainable nylon alternative ECONYL is made up of nylon waste, including fishing nets, fabric scraps, carpet flooring, and industrial plastic. The nylon waste is recovered and converted into new yarn. This regenerated nylon can be recycled, recreated, and remoulded repeatedly. ECONYL is chemically identical to nylon 6, which means it has the same characteristics as traditional nylon and can be used in the same ways.

The ECONYL Regenerative System happens in four steps.

  1. They rescue waste like fishing nets, fabric scraps, and industrial plastic from all over the world. The waste is sorted and cleaned to recover all of the nylon possible.
  1. Through radical regeneration and purification, the recovered nylon is recycled back to its original purity, allowing the quality of ECONYL to reflect that of fossil-based nylon.
  1. The recycled nylon is processed into new yarns and polymers for fashion and industrial brands.
  1. These brands can use ECONYL to create new products. Once the products containing ECONYL are no longer useful to customers, they can return and be regenerated again.

According to the ECONYL website, for every 10,000 tons of ECONYL raw material produced, they can save 70,000 barrels of cruise oils and over 65,000 tonnes of carbon dioxide emissions. Switching to sustainable nylon alternative ECONYL also reduces the global warming impact of nylon by up to 90% compared with the material from oil.

Using abandoned fishing nets to make ECONYL helps to clean up the oceans and helps reduce the risk of marine animals getting entangled by abandoned nets. ECNOYL has teamed up with many take-back organizations to collect the materials used in creating their regenerative nylon. They have two carpet facilities in the US where they collect nylon 6. They also work with the Healthy Seas Foundation to collect recovered fishing nets.

ECONYL has teamed up with over 100 brands (many are swimwear and activewear brands) to include this sustainable nylon alternative in their products. Gucci, for example, launched its own recycling program to convert textile scraps into new ECONYL yarn. Gucci has also used ECONYL to create sustainable nylon alternative handbags. In 2023, Stella McCartney launched its first-ever close-the-loop garment, a parka made from ECONYL that is designed to be returned and regenerated into new yarn at its end-of-life. Adidas has been known to incorporate ECONYL into some of their swimwear designs.

We are also seeing ECONYL used in interior brands like Pottery Barn to make rugs and car brands like BMW and Mercedez-Benz to produce their car floor mats. BMW also uses ECONYL in various interior trims, such as seat covers, door panels, and dashboard components.

As more brands begin to use ECONYL in their designs, we may eventually see a phase-out of traditional, fossil-fuel nylon. This sustainable switch will help the design and fashion industries become greener, our oceans cleaner, and help to create bigger importance on recycling and regenerating used materials.

 

 


 

 

Source  Happy Eco News

New Carbon Capture Tech Turns CO2 into Solid Carbon

New Carbon Capture Tech Turns CO2 into Solid Carbon

New capture technology turns CO2 into solid carbon, a coal-like product that can be safely reburied.

Scientists may have discovered a groundbreaking new method to pull out of the air and convert CO2 into solid carbon flakes. Researchers at Australia’s Royal Melbourne Institute of Technology (RMIT) have pioneered an efficient carbon mineralization process using liquid metal catalysts. This technology could provide a sustainable way to capture atmospheric CO2 and safely store it long-term as a stable solid.

Most carbon capture techniques today focus on compressing CO2 gas into a liquid that is injected deep underground. However potential leakage risks make this method less than ideal for permanently storing billions of tons of carbon dioxide. We urgently need innovative solutions to remove and safely store the CO2 already overburdening our atmosphere.

That’s why RMIT’s new mineralization approach to turn CO2 into solid carbon is so promising. It converts greenhouse gases into inert carbon solids at room temperature. This offers a potentially cheaper, more secure form of carbon storage compared to current methods.

RMIT’s method utilizes molten liquid metals to trigger a chemical reaction, transforming gaseous CO2 into solid carbon flakes. This occurs at ambient temperature inside a simple glass tube device. The process works by sending CO2 into the glass tube containing a liquid metal alloy of gallium, indium, tin, and cerium. Running an electric current through the metal accelerates the carbon mineralization reaction.

Carbon steadily accumulates as a layer of solid flakes on the liquid metal surface and the only byproduct of the process is pure oxygen. The flakes are then removed allowing the process to continue indefinitely. Because this process occurs are room temperature, the energy requirements are far lower than other systems.

The researchers experimented with different metal compositions and temperature conditions to optimize the carbon conversion process. Once optimized, the system can continuously pull in and convert atmospheric CO2 into solid carbon without additional heat or pressure.

Unlike underground injection techniques, solid carbon can easily be collected for safe, permanent storage. The carbon solids could even be processed into materials like carbon fiber. And since the process only needs a small amount of electricity and air, it has minimal environmental impact or manufacturing costs.

Turning CO2 into solid carbon could be a more predictable, sustainable and longer lasting approach to carbon capture and storage. The RMIT team is already investigating ways to scale up the liquid metal carbon mineralization method. Adoption by power plants or heavy industry could significantly cut CO2 outputs.

Finding viable ways to remove excess greenhouse gases is critical to slow global warming. Since the Industrial Revolution, over 1.3 trillion tons of carbon dioxide have entered the atmosphere – and the pace is accelerating. New solutions like RMIT’s carbon mineralization technology will be essential to extracting legacy emissions already dangerously heating our planet.

 


 

 

Source   Happy Eco News

Harnessing Carbon Mineralization: A Powerful Tool to Combat Climate Change

Harnessing Carbon Mineralization: A Powerful Tool to Combat Climate Change

Carbon mineralization, the process that converts carbon dioxide into solid carbonate minerals, holds immense potential to combat climate change. While it occurs naturally, humans can accelerate this process through various methods.

By refining techniques such as biochar utilization, enhanced weathering, and ocean fertilization, we can unlock the power of carbon mineralization to effectively reduce atmospheric carbon dioxide levels and mitigate the adverse impacts of climate change.

There are many ways in which we can accelerate the amount of carbon we sequester using the process. Biochar, a form of charcoal derived from biomass, offers a sustainable solution to enhance carbon mineralization. When integrated into the soil, biochar amends its composition, enhancing its capacity to sequester carbon. The porous structure of biochar acts as a long-term reservoir, promoting carbon retention while fostering beneficial microbial activity in the soil. This method bolsters soil fertility and carbon storage, contributing to climate change mitigation and sustainable agriculture.

Enhanced weathering harnesses the natural process of rock breakdown to expedite carbon mineralization. Techniques involve accelerating rock weathering by introducing acidic or basic substances or fragmenting rocks into smaller particles. Carbon dioxide reacts with the minerals, forming stable carbonate compounds that can endure for centuries. By leveraging enhanced weathering, we can significantly augment carbon sequestration rates, offering a tangible solution to counteract rising carbon dioxide levels.

Ocean fertilization presents a compelling avenue to store carbon on a large scale. By introducing essential nutrients, such as iron or phosphorus, to the ocean, the growth of algae is enhanced. These algae act as carbon sinks, absorbing atmospheric carbon dioxide through photosynthesis. Subsequently, when the algae die and sink to the ocean floor, they carry the sequestered carbon along, where it can remain locked away for centuries or even longer. Ocean fertilization holds promise in its ability to mitigate climate change while fostering marine ecosystems.

Carbon mineralization represents a powerful tool in the fight against climate change, offering several noteworthy advantages over other methods:

  1. Substantial Carbon Removal: By accelerating carbon mineralization, we can remove billions of tonnes of carbon dioxide from the atmosphere annually. This significant reduction in greenhouse gas concentrations would directly curb global warming and its associated impacts.
  2. Leveraging Natural Processes: Carbon mineralization harnesses and enhances naturally occurring processes. By utilizing and accelerating these processes, we minimize the need for technologically complex and energy-intensive solutions, leading to a more sustainable approach to climate change mitigation.
  3. Restoration of Carbon Balance: Historically, human activities such as deforestation and fossil fuel combustion have disrupted the carbon balance by releasing large amounts of carbon dioxide into the atmosphere. Carbon mineralization offers an opportunity to restore this balance by actively sequestering carbon and reversing the damage caused by human-induced carbon emissions.

While carbon mineralization shows tremendous promise, these are early days. Implementing carbon mineralization techniques on a large scale requires substantial investment and infrastructure development. The costs associated with establishing and maintaining these methods may present challenges, necessitating collaborative efforts from governments, private sectors, and research institutions.

It is crucial to carefully assess the potential environmental impacts of carbon mineralization techniques. For instance, ocean fertilization may disrupt marine ecosystems if not executed responsibly. Thorough environmental impact assessments and regulatory frameworks are essential to ensure the sustainable deployment of carbon mineralization methods.

Carbon mineralization offers an innovative and promising approach to mitigating climate change by actively removing carbon dioxide from the atmosphere. Through methods like biochar utilization, enhanced weathering, and ocean fertilization, we have the potential to achieve substantial carbon sequestration, restore the carbon balance, and forge a more livable planet.

 

 


 

 

Source  Happy Eco News

 

SAY Carbon is creating the coolest sustainable boat brand

SAY Carbon is creating the coolest sustainable boat brand

BizClik Media and Sustainability Magazine CEO Glen White had first-hand experience aboard a luxurious, environmentally-friendly yacht made by SAY Carbon Yachts.

The business, founded in Germany, produces cutting-edge, technologically advanced yachts, which are built using carbon fibre. Featuring three luxurious yachts – the SAY 29 (E), SAY 42 and SAY 52 – the business prioritises comfort, luxury and sustainability. While enjoying a trip to Ibiza, Spain, White got up close and personal with the SAY 42.

SAY 42: Ultra-low-emission engines combined with maximum comfort

Boasting low emissions and high performance, the SAY 42 demonstrates that stylish, luxurious and sustainable boating is possible – even for those who want to enjoy the seas with their family and friends

The SAY 42 is equipped with two certified ultra-low-emission V8 engines (860 hp) that consume up to 50% less fuel compared to conventional motor yachts, all while maintaining the same renowned performance.

The SAY 42 is ideal for those who appreciate extravagance. Each yacht is characterised by a modern design, featuring striking and unique lines and is equipped with state-of-the-art technology, including a digital cockpit, Seakeeper 2 stabilisers, pop-up showers, a retractable table and an owner’s cabin with a fully-equipped bathroom.

To ensure the yachts meet the highest possible sustainability standards while continuing to ooze luxury, CEO Karl Wagner, maintains control over every aspect of the manufacturing process. Every SAY Carbon Yacht is meticulously crafted to bring the customer’s vision to life, designed to be user-friendly while promoting maximum comfort.

 

SAY Yachts leading carbon fibre adoption

While working with his previous business, Carbo Tech, Wagner became a leading producer of carbon-fibre-reinforced components for the automotive industry. Its customer base included prominent names from Formula 1, including Aston Martin, McLaren and Porsche.

The numerous advantages of carbon fibre have led to its widespread popularity in various industries, including aviation, construction and motorsports. As pioneers in the pursuit of lightweight design, Wagner and his team demonstrate their expertise in manufacturing innovative motor yachts by utilising the properties of carbon fibre.

“Our expertise in lightweight constructions enables us to achieve a unique combination of acceleration, design and agility while lowering fuel consumption and extending range,” Wagner comments.

Consequently, SAY Yachts has emerged as an international, established manufacturer of luxury motor boats, offering only the highest quality available.

 

 


 

 

Source  Sustainability

New Ocean Carbon Removal Tools Developed

New Ocean Carbon Removal Tools Developed

What is Ocean Carbon Removal?

Ocean carbon removal is a process that aims to remove excess carbon dioxide from our oceans. As we all know, the ocean plays a critical role in regulating our planet’s climate by absorbing large amounts of CO2 from the atmosphere. However, this absorption has a limit, and as we continue to emit more and more greenhouse gases into the atmosphere, the ocean’s ability to absorb CO2 is reaching its threshold.

The process of removing carbon dioxide involves capturing it directly from seawater or indirectly through biological processes, such as photosynthesis carried out by marine organisms like phytoplankton. Once captured, it can be stored permanently in deep-sea sediments or used for various industrial purposes.

Ocean carbon removal has gained significant attention recently due to its potential for reducing atmospheric CO2 levels and mitigating climate change impacts on marine ecosystems. Additionally, this solution can generate ocean-based carbon credits, which provide financial incentives for companies investing in sustainable practices that reduce their carbon footprint.

Ocean carbon removal offers promising solutions for mitigating climate change while protecting our oceans’ health but also requires careful evaluation of its environmental risks and economic feasibility before implementation at scale.

The company Planetary Technologies has released an innovative ocean-based carbon removal protocol. The protocol aims to provide a standard for measuring and verifying the effectiveness of ocean-based carbon removal projects.

The technology adds a mild alkaline substance to the ocean, which reduces acidity and converts dissolved carbon dioxide into a salt that remains dissolved in the ocean for up to 100,000 years. This process allows for more atmospheric carbon dioxide to be absorbed by the ocean.

The company has been testing its technology in the U.K., Canada, and the U.S. and claims it could remove up to 1 million tonnes of carbon dioxide from the atmosphere by 2028 while restoring marine ecosystems. The publication of the protocol is a major step forward for the nascent market for marine carbon removals.

 

How does it work?

Ocean carbon removal is a process that involves removing carbon dioxide from the Earth’s atmosphere and storing it in the ocean. The process works by using natural or artificial processes to convert atmospheric CO2 into dissolved bicarbonate ions, which then sink and become trapped in deep-ocean sediments.

Natural processes include photosynthesis by marine organisms such as phytoplankton, while artificial methods involve injecting CO2 directly into seawater or using specialized equipment to capture CO2 from the air.

One of the key benefits of ocean carbon removal is its potential to mitigate climate change. By removing excess CO2 from the atmosphere, we can slow down global warming and reduce its impacts on our planet.

However, there are also concerns about how this technology might impact marine ecosystems. Injecting large amounts of CO2 into seawater could alter pH levels and affect marine life while capturing too much atmospheric CO2 could disrupt natural carbon cycles.

Ocean carbon removal has enormous potential for reducing greenhouse gas emissions and mitigating climate change. However, careful planning and monitoring will be necessary to ensure that these technologies are deployed safely and sustainably.

 

What are the benefits?

The benefits of ocean carbon removal are numerous and far-reaching. One of the primary benefits is that it provides a solution to one of the biggest challenges facing our planet today: climate change. By removing carbon from the atmosphere, we can slow down global warming and reduce its devastating effects.

In addition, ocean carbon removal has a lower environmental impact than other methods, such as land-based solutions or direct air capture. This is because oceans cover more than 70% of the Earth’s surface, making them an ideal location for large-scale carbon sequestration projects without disturbing natural habitats or ecosystems.

Another benefit is that it can create new economic opportunities in coastal communities through jobs related to monitoring, maintenance, and technology development. Furthermore, companies can earn ocean carbon credits by participating in these programs, encouraging investment in sustainable practices while funding future initiatives.

Ocean carbon removal helps protect marine life by reducing acidification levels caused by excess CO2 emissions. Acidification harms many marine species, including coral reefs which support millions of people worldwide through fishing and tourism industries.

 

What are the Concerns?

Despite the numerous benefits of ocean carbon removal, there are also concerns that need to be addressed. One of the primary concerns is the potential environmental impact on marine ecosystems. Large-scale ocean carbon capture technologies deployment may interfere with fish habitats and disrupt food chains.

Another concern is the lack of regulatory frameworks for validating and verifying the efficacy of ocean carbon credits. With no established standards in place, it becomes difficult to ensure transparency and accountability in measuring how much carbon has been removed from oceans.

Additionally, some experts warn that relying on carbon removal could divert attention away from more pressing climate solutions, such as reducing greenhouse gas emissions at their source. Without a comprehensive approach to addressing climate change, we risk overlooking other important factors contributing to global warming.

As we continue exploring ways to reduce our impact on the planet’s environment, it’s essential we address these concerns head-on by conducting thorough research and creating clear regulations around monitoring the effectiveness of this promising new technology.

 

A Piece of the Big Picture

The release of Planetary Technologies’ ocean-based carbon removal protocol is a significant milestone in the fight against climate change. The ability to remove carbon dioxide from our oceans not only helps reduce greenhouse gas emissions but also has positive effects on marine life and ecosystems. While there are concerns about potential environmental impacts and costs associated with this technology, it is important to continue exploring innovative solutions like these to address global warming.

Furthermore, individuals can get involved by supporting research efforts or advocating for policies that promote ocean-based carbon capture and storage projects. Ultimately, reducing our carbon footprint requires collective action at all levels – from governments and businesses to individuals.

By working together towards a sustainable future, we can protect our planet’s health while creating new opportunities for economic growth and innovation. Ocean carbon removal is just one piece of the bigger picture, but an important one in our journey towards a greener tomorrow.

 

 


 

 

Source Happy Eco News

Biomimicry in Sustainable Designs

Biomimicry in Sustainable Designs

Biomimicry in Sustainable Design

The construction industry is very energy intensive. Steel and concrete, both popular materials in construction, are very carbon-intensive in their production. Many of the emissions from concrete production are attributed to burning fossil fuels such as oil and natural gas, which heat up the limestone and clay that becomes Portland cement. There is an opportunity for the construction industry to shape a nature-positive economy from the city to the building design and material and component levels.

The Mobius Project, a greenhouse designed by Iguana Architects, uses biomimicry in sustainable design by drawing inspiration from how ecosystems in nature work. They are committed to revolutionizing food production by turning waste into locally grown, low-carbon nutritious food. The biological waste can also be turned into methane to generate electricity for the greenhouse. In their closed cycle with zero waste, one organism’s waste becomes the next’s input. The idea for the Mobius Project came from observing the oak tree, which has the potential to reuse its output resources, including materials, energy and water.

The Eden Project, designed by exploration architecture, uses biomimicry in sustainable design with a giant greenhouse inspired by the biblical Garden of Eden. It was designed to resemble soap bubbles, carbon molecules, and radiolaria. The idea was that the soap bubbles would be optimally positioned in the sun to allow for complete self-healing. They also took inspiration from dragonfly wings for the best way to assemble steel pieces, allowing for a lightweight structure that required fewer carbon emissions to transport from place to place.

Designers have also looked at lotus leaves to decrease the need for protective finishings, which are usually toxic. The lotus leaf has tiny hairs covered with a waxy coating that allows it to stay dry. Water that hits the leaf will roll off the waxy nonpolar coating. This has inspired a protective coating for external areas that will repel water and dirt, which reduces the need for maintenance. Moreover, reducing the water accumulation in buildings will reduce deterioration mechanisms in infrastructures, such as steel corrosion, sulphate attacks, freezing and thawing.

Limestone-producing bacteria can be used to extend a building’s lifespan. Certain bacteria can produce limestone, filling the gaps and cracks that affect concrete structures over time. This can reduce the need to use new concrete for repairs.

Learning from nature and imputing the way nature works into our designs and in the construction industry can make our built environments more sustainable. There’s so much we can learn from nature; the more we discover, the more we can work toward reducing our impact on the planet.

 

 


 

 

Source Happy Eco News