Search for any green Service

Find green products from around the world in one place

4D-Printed Seeds That Can Study the Soil

4D-Printed Seeds That Can Study the Soil

Soil plays an important role in keeping our planet healthy. Soil filters our water, provides plants with nutrients, and provides a home for billions of organisms. Moreover, the soil is an important ingredient for growing food, and it protects us against flooding and combats drought. Because soil is made in part of broken down plant matter, they contain a lot of carbon that the plants took in from the atmosphere. The capacity of carbon that soil can hold depends on climate, temperature, rainfall, soil type and depth.

Soil is under threat due to rising temperatures and biodiversity loss due to climate change. Half of the topsoil in the world has been lost in the last 150 years due to erosion. These impacts include compaction, loss of soil structure, nutrient degradation and soil salinity. Soil nutrient loss is recognized as among the most critical problems at a global level for food security and sustainability.

Because many of the effects of climate change on soil happen underground, it can be difficult to study the impacts. Scientists from the Bioinspired Soft Robotics Lab in Genoa, Italy, have developed a solution to this problem. They have designed the first 4D-printed seed-inspired soft robot. The robotic seed mimics the movement and performance of a natural seed. The seed is said to help act as a sensor for monitoring pollutants, CO2 levels, temperature and humidity in the soil.

The structure of the South African geranium inspires the artificial seed. The seeds can change shape in response to how humid their environment is. The seed can autonomously move around a terrain surface and penetrate the soil. Here, the seed can explore the soil and penetrate inside fractures, extracting energy from the environmental humidity changes. The seeds can find a home for themselves by expanding and shrinking due to changes in the water content of the air.

The seed was created using 4D printed structures as they can create dynamic morphological changes under environmental stimuli. Additionally, these structures can be programmed to reshape and perform work for any type of scenario. The seed is also strong enough to lift about 100 times its own weight. The seeds are made out of biodegradable polymers, which are activated using oxygen plasma to increase water-attracting abilities. The scientists chose these materials because they absorb and expand when exposed to humidity.

This invention could be a battery-free wireless tool for environmental topsoil monitoring. It could be a low-cost system to collect soil data across remote areas without monitoring data. It is also a relatively non-invasive way to study and monitor the soil. And the role of biodegradable materials and eco-friendly processing is fundamental for sustainable and green robotics to avoid the dispersal of new waste in natural environments. This study could be an inspiration for other researchers looking to study hard-to-reach areas that are at risk due to climate change.

 

 


 

 

Source Eco Hero News

How Nature can help Clean Up Polluted Waterways

How Nature can help Clean Up Polluted Waterways

Bivalves: Nature’s Water Filter:

One of nature’s unsung heroes in water remediation is the humble bivalve. Clams, mussels, and other bivalves are exceptional filter feeders that can play a crucial role in improving water quality. These amazing creatures can filter large volumes of water, removing suspended particles, nutrients, and contaminants in the process. For example, a single adult freshwater mussel can filter up to 15 litres of water daily! That’s like having a tiny water treatment plant in our rivers and lakes.

Bivalves work their magic by drawing in water through their siphons and extracting food particles as the water passes through their gills. They consume organic matter, algae, and even bacteria, effectively reducing excess nutrients in the water that can cause harmful algal blooms and other water quality issues. Moreover, bivalves can also accumulate heavy metals and other pollutants in their tissues, effectively removing these contaminants from the water and sequestering them in their shells or bodies.

Research has shown that bivalves can be used as a natural tool in ecological restoration projects to enhance water filtration and improve water quality. For example, in Chesapeake Bay, USA, oyster reefs have been constructed to help filter excess nutrients and sediment from the water, thereby promoting a healthier ecosystem. Similar efforts are being made in other parts of the world, such as the Netherlands and China, where mussels are being used to clean up polluted waterways.

Aquatic Plants: Nature’s Green Cleaners:

Aquatic plants, such as reeds, cattails, and water hyacinths, are another powerful tool nature has provided us to clean up polluted waterways. These green wonders provide habitat and food for many aquatic species and act as natural purifiers for our water bodies.

Aquatic plants are known for absorbing excess nutrients, particularly nitrogen and phosphorus, which are major pollutants in water bodies. Through a process called uptake, aquatic plants draw in these nutrients from the water column and store them in their tissues. This helps to reduce nutrient levels, which can otherwise fuel harmful algal blooms and deplete oxygen in the water, leading to fish kills and other ecological imbalances.

Aquatic plants also help to stabilize shorelines and reduce erosion. Their extensive root systems anchor the soil and prevent sediments from being washed into the water, thereby reducing sedimentation and turbidity. This is particularly important in urban areas where runoff from paved surfaces and agricultural fields can carry pollutants into our waterways.

Constructed wetlands, which are artificial systems designed to mimic the functions of natural wetlands, often utilize aquatic plants as a natural means of water treatment. These systems use a combination of physical, chemical, and biological processes, including the uptake of nutrients by aquatic plants, to remove pollutants from the water. Constructed wetlands have been successfully used in various parts of the world, such as the United States, Europe, and China, to treat wastewater, stormwater, and agricultural runoff, among other types of water pollution.

Fish: Nature’s Clean-Up Crew:

When it comes to cleaning up polluted waterways, fish are also important players in nature’s clean-up crew. Many fish species, such as catfish, carp, and tilapia, are known for their ability to consume excess algae and organic matter in the water. This helps to prevent algal blooms and reduce the accumulation of organic debris, which can otherwise degrade water quality and harm aquatic life.

For example, in Lake Taihu in China, which has been plagued by severe water pollution and harmful algal blooms, grass carp (Ctenopharyngodon idella) have been introduced as a biological control method. These fish feed on the excess algae in the water, helping to reduce the occurrence of harmful algal blooms and improve water quality.

Fish can also be used in aquaculture systems for water purification. Aquaponics, for instance, is a sustainable system that combines fish farming with hydroponic plant cultivation. The fish produce waste that is converted into nutrients for the plants, which in turn filter the water and provide a clean environment for the fish. This mutually beneficial relationship between fish and plants can be a powerful tool for sustainable food production.

Other Natural Methods:

Besides bivalves, aquatic plants, and fish, several other natural methods can be harnessed to clean up polluted waterways. For example, bacteria and microorganisms naturally occurring in water bodies play a crucial role in breaking down organic matter and contaminants, helping to improve water quality. Wetlands, marshes, and other natural habitats act as filters, trapping sediment and pollutants before entering water bodies.

In addition, land management practices, such as riparian buffers and conservation tillage, can help prevent soil erosion and reduce nutrient runoff into water bodies. Riparian buffers are strips of vegetation along the banks of rivers and streams that act as natural filters, trapping sediment and absorbing nutrients before they enter the water. Conservation tillage techniques, on the other hand, minimize soil disturbance and help to retain soil structure, reducing erosion and nutrient runoff.

Nature has provided us with some incredible tools to clean up polluted waterways. Bivalves, aquatic plants, fish, bacteria, microorganisms, wetlands, and land management practices improve water quality and restore our precious water resources. These natural methods offer sustainable and eco-friendly solutions to combat water pollution without relying solely on costly and energy-intensive human-made technologies.

It’s essential that we recognize the value of these natural tools and incorporate them into our efforts to protect and restore our water bodies. Conservation and restoration projects that harness the power of nature can not only help clean up polluted waterways, promote biodiversity, enhance ecosystem services, and provide long-term solutions for sustainable water management.

 

 


 

 

Source Happy Eco News