Search for any green Service

Find green products from around the world in one place

Sustainable Mushroom Coffins – Human Compost

Sustainable Mushroom Coffins – Human Compost

Sustainable Mushroom Coffins

Mushroom coffins are made from mycelium, the vegetative part of fungi. The mycelium is grown around a mold of the desired shape and then dried, forming a sturdy, biodegradable material that can be used as an alternative to traditional coffins. These coffins are available in various shapes and sizes and can even be customized to suit individual preferences.

The coffin is designed to decompose quickly and enrich the soil. When buried, the mycelium in the coffin will break down organic matter, including human remains, into nutrients and minerals that nourish plants. It can also improve soil quality by breaking down toxic chemicals and pollutants in the soil, making it healthier for future growth.

 

Benefits Compared to Traditional Coffins

Reduced Carbon Emissions: Traditional coffins made of wood and metal are known to produce large amounts of carbon emissions during production and transportation. On the other hand, sustainable mushroom coffins are made of natural materials and require less energy to manufacture, resulting in lower carbon emissions.

Cost-effectiveness: Sustainable mushroom coffins are also more cost-effective than traditional coffins. While traditional coffins can be expensive due to the use of expensive materials and the cost of labour, mushroom coffins are much cheaper to produce, making them more affordable for families looking for sustainable alternatives.

Sustainable Use of Natural Resources: Sustainable mushroom coffins are also better for the environment because they utilize renewable natural resources and do not require harmful chemicals or pesticides to grow. Additionally, they help reduce the waste generated from traditional burial practices.

 

Composting Human Remains

Human compost is converting human remains, such as bones and tissue, into nutrient-rich soil using the same principles of composting used to fertilize gardens. It involves placing the body in a container filled with organic material like wood chips, straw, or sawdust. Oxygen and moisture encourage decomposition, resulting in nutrient-rich soil that nourishes plants.

Human compost is a more sustainable option than traditional burial and cremation practices. Traditional burial practices involve embalming fluids containing harmful chemicals that can seep into the soil and water supply. Conversely, cremation requires large amounts of energy to burn the body, which contributes to carbon emissions.

Human compost produces significantly less carbon emissions than traditional burial and cremation practices. Unlike cremation, human composting does not require high levels of energy use. Instead, the decomposition process occurs naturally, requiring only minimal energy input.

Human compost produces nutrient-rich soil that can be used to grow plants, trees, and other vegetation. This helps to replenish the soil and promote healthy plant growth.

The use of compost from human remains also helps prevent soil erosion. This is because compost has properties that help to retain moisture and reduce runoff, which can help prevent soil erosion.

If you are interested in using sustainable death practices like sustainable mushroom coffins and human compost, it is important to research and find a provider that offers these options in your jurisdiction. Discussing these options with your loved ones is also important so that your wishes can be honoured when the time comes.

While death is a reality for all of us, we can still make choices that positively impact the environment even after we are gone. By choosing sustainable death practices, we can make a more meaningful contribution to the planet, leaving behind a legacy of environmental consciousness and stewardship.

 

 


 

 

Source   Happy Eco News

4D-Printed Seeds That Can Study the Soil

4D-Printed Seeds That Can Study the Soil

Soil plays an important role in keeping our planet healthy. Soil filters our water, provides plants with nutrients, and provides a home for billions of organisms. Moreover, the soil is an important ingredient for growing food, and it protects us against flooding and combats drought. Because soil is made in part of broken down plant matter, they contain a lot of carbon that the plants took in from the atmosphere. The capacity of carbon that soil can hold depends on climate, temperature, rainfall, soil type and depth.

Soil is under threat due to rising temperatures and biodiversity loss due to climate change. Half of the topsoil in the world has been lost in the last 150 years due to erosion. These impacts include compaction, loss of soil structure, nutrient degradation and soil salinity. Soil nutrient loss is recognized as among the most critical problems at a global level for food security and sustainability.

Because many of the effects of climate change on soil happen underground, it can be difficult to study the impacts. Scientists from the Bioinspired Soft Robotics Lab in Genoa, Italy, have developed a solution to this problem. They have designed the first 4D-printed seed-inspired soft robot. The robotic seed mimics the movement and performance of a natural seed. The seed is said to help act as a sensor for monitoring pollutants, CO2 levels, temperature and humidity in the soil.

The structure of the South African geranium inspires the artificial seed. The seeds can change shape in response to how humid their environment is. The seed can autonomously move around a terrain surface and penetrate the soil. Here, the seed can explore the soil and penetrate inside fractures, extracting energy from the environmental humidity changes. The seeds can find a home for themselves by expanding and shrinking due to changes in the water content of the air.

The seed was created using 4D printed structures as they can create dynamic morphological changes under environmental stimuli. Additionally, these structures can be programmed to reshape and perform work for any type of scenario. The seed is also strong enough to lift about 100 times its own weight. The seeds are made out of biodegradable polymers, which are activated using oxygen plasma to increase water-attracting abilities. The scientists chose these materials because they absorb and expand when exposed to humidity.

This invention could be a battery-free wireless tool for environmental topsoil monitoring. It could be a low-cost system to collect soil data across remote areas without monitoring data. It is also a relatively non-invasive way to study and monitor the soil. And the role of biodegradable materials and eco-friendly processing is fundamental for sustainable and green robotics to avoid the dispersal of new waste in natural environments. This study could be an inspiration for other researchers looking to study hard-to-reach areas that are at risk due to climate change.

 

 


 

 

Source Eco Hero News

Composting Your Clothing – it’s Being Done in Australia

Composting Your Clothing – it’s Being Done in Australia

The average consumer now buys 60% more clothing than they did 15 years ago, and over 92 million tonnes of what is purchased gets thrown away – usually into a landfill. Another problem is the fabric from which our clothing is made. Around 70 percent of the clothing market is made from synthetic fabrics such as polyester, nylon and acrylic, all made from non-renewable sources such as oil and natural gas.

These synthetics can’t biodegrade, meaning they sit in landfills for hundreds of years. Because so many different materials can go into making a single garment, they are hard to separate so they can be recycled properly. Sorting different fibres and materials by hand is extremely labour intensive, slow, and requires a skilled workforce that doesn’t seem to exist in many countries.

What is the solution to reducing textile waste? Consumers can buy less, repair, donate, rent, and organize clothing swaps with friends. Some clothing brands are taking the issue further by creating garments that can be composted after they can no longer be used. Based in Australia, the Very Good Bra has created bras and undergarments made from 100% botanically sourced materials that can be composted, worm-farmed or buried in the soil at the end of their life.

The company uses no spandex, polyester or nylon – even in sewing, thread, elastic and labelling. This means that their products are 100% plastic-free. Their elastics are made from natural tree rubber knitted into organic cotton. Their hooks for bras are made from 100% organic cotton and Tencel sewing thread. Everything has been designed to be put in the soil as is.

The company has worked with sustainability experts, academics and industry to create a proposal for Standards Australia to create standards for compostable textiles. This standard would allow garments to be disposed of in commercial composters and would guarantee that the clothes would compost safely. The proposal was approved by Standards Australia and will enter a development phase to determine the criteria clothing will have to meet so that the compost would not be affected by dyes or flame-retardant coatings. For this to work, more brands must actively participate and consider using more than just natural fibres to ensure their clothing is truly compostable, such as nuts or bio elastics buttons to replace zippers.

If more clothing brands think about making their clothing compostable, we can enter a circular economy and reduce our landfill waste and impact on the planet.

 

 


 

 

Source Happy Eco News