Search for any green Service

Find green products from around the world in one place

Carbon Dioxide Livestock Feed

Carbon Dioxide Livestock Feed

Researchers may have discovered a protein substitute for livestock feed that is significantly less environmentally damaging than corn and soybean production. The researchers have explored the concept of synthetic nutrition, which means essential nutrients can be produced artificially, efficiently and with a small footprint. They have turned greenhouse gas emissions into an ingredient that could be used for carbon dioxide livestock feed.

The researchers captured carbon dioxide and combined it with renewable hydrogen to make methanol powered by wind and solar energy. With the material created, they applied a series of enzymes into an eight-step process which, after several combinations, created an amino acid called L-alanine. This amino acid makes protein and is an energy source for muscles and the central nervous system. It also strengthens the immune system and helps the body use sugars.

This isn’t the first time researchers have been able to transform carbon dioxide into food products. Researchers have found a way to convert carbon dioxide into starch that typically comes from corn which requires a lot of land, water and fertilizer to grow. The process they used was 8.5 times more efficient than photosynthesis, which the corn plant uses to convert CO2 and sunlight into carbs. Moreover, their process took only four hours compared to the 120 days required for corn to grow and generate starch.

These new processes of using carbon dioxide to minimize the use of corn and starch will bypass the problem of repurposing a climate-damaging waste stream. Although there are other ways to synthesize L-alanine protein, they require emission-intensive processes that require petroleum products. Using existing carbon dioxide will reduce the need for emissions and harmful products. It also decouples production from the land because less land will be needed to produce the same amount of L-alanine. It will also use significantly less energy as the energy required will be taken from renewable sources.

The demand for animal protein continues, so the need for carbon dioxide livestock feed will also rise. Researchers are developing solutions that utilize harmful and excess emissions that can be transformed into food for these animals. These new solutions will allow us to move away from excess land and water use and monocultures and help us create more biologically diverse environments.

 

 


 

 

Source Happy Eco News

Creating Fabric Materials out of Bacteria

Creating Fabric Materials out of Bacteria

Fast fashion is a sector of the fashion industry whereby business models rely on cheap, rapid and large-scale production of low-quality clothing. Today’s clothing is made of durable and cheap materials such as nylon or polyester. Approximately 60% of fast fashion items are produced with plastic-based fabrics. The microplastics in these garments leach into the waterways with each wash and dry. Half a million tons of these contaminants enter the ocean each year. The fashion industry is also the world’s second-largest water supply consumer. On top of it all, more than 85% of the textiles and clothing purchased will end up in landfill every year.

Modern Synthesis, a biotechnology company, has created a biomaterial made from bacterial fermentation that can be used to create a low-carbon alternative to traditional clothing fabrics. The material the bacteria produces is called nanocellulose, which the company takes from waste feedstocks, including fruit or other agricultural waste. The bacteria will grow on that sugar and naturally produce nanocellulose.

The nanocellulose fibers are very strong and so small that they create strong bonds when they stick to each other. The fibers are eight times stronger than steel and stiffer than Kevlar. With the nanocellulose, the company is creating a material similar to nylon, ripstop fabric (woven fabric made out of nylon) or a coated textile. The material is designed to feel dry and warm, resembling cellulose or paper.

The process of creating the fabric can be adjusted by using different types of thread, some of which can biodegrade, while other threads can be recycled similarly to other cellulose. The project started with the creation of a shoe. Still, thanks to the material’s versatility, the company thinks it can be a good alternative to traditional textiles as it can also be dyed and given different coatings.

They believe their nanocellulose fibers are a significantly more sustainable fabric alternative to cotton, which takes a lot of resources and energy to transform. This material creates significantly fewer emissions than traditional textiles as it only requires transforming waste sugar into usable material. While the material is not yet available for consumer use, the company offers research, development, and consultation services to help brands make better, more environmentally friendly material choices.

As the fashion industry looks for more sustainable ways to make garments, many companies are moving towards using biomaterials to create new textiles. We are now seeing leathers made from fruits and vegetables, sequins made from algae, and so much more. As fast fashion continues to be a problem, the efforts that companies like Modern Synthesis are taking will help the industry reduce its environmental impact while continuing to clothe the world.

 

 


 

 

Source Happy Eco News

Novel “artificial leaf” design ups the carbon capture rate by 100x

Novel “artificial leaf” design ups the carbon capture rate by 100x

Recreating the process of natural photosynthesis in which plants turn sunlight, water and carbon dioxide into energy is a long-pursued goal in science. Often described as an “artificial leaf,” these systems could play a key role in the fight against climate change, and a team of engineers has just picked up the pace with a solution that captures carbon dioxide at 100 times the rate of current technologies.

We have looked at quite a number of artificial leaf systems over the years that use sunlight to turn water into liquid fuels and electricity. One interesting example came from engineers at the University of Illinois Chicago (UIC) in 2019. It had a unique design the creators say made it suitable for use in the real world, unlike other laboratory solutions that could only work with carbon dioxide from pressurized tanks.

The solution consisted of a standard artificial photosynthesis unit that was encased in a transparent capsule filled with water, and featured a semi-permeable outer layer. As sunlight struck the device, the water evaporated through the pores in the outer layer and carbon dioxide was drawn in to replace it, where the unit inside turned it into carbon monoxide. This CO could in turn be captured and used to make synthetic fuels.

Through some key tweaks to the design, the scientists have now taken its performance to new heights. The team used inexpensive materials to integrate an electrically charged membrane that acts as a water gradient, with both a dry and wet side. On the dry side an organic solvent attaches to the captured carbon dioxide and turns it into concentrated bicarbonate, which builds up on the membrane.

A positively charged electrode on the wet side then draws the bicarbonate across the membrane and into the watery solution, where it is converted back into carbon dioxide to make fuels or in other applications. Altering the electrical charge can speed up or slow down the rate of carbon capture, which the scientist found at its optimum could capture 3.3 millimoles per hour for each four square centimeters (0.6 sq in) of material.

 

Diagram depicts the design of a novel “artificial leaf” device that captures carbon dioxide with great efficiency Aditya Prajapati/UIC

 

This “flux rate” is described as very high, and more than 100 times better than existing systems. Importantly, only a negligible amount of energy was required to power the reactions, at 0.4 kilojoules per hour, less than what it takes to run a one-watt LED lightbulb. Equally impressive, the team says the system can capture carbon dioxide at a price of US$145 a ton, which is within the Department of Energy’s guidelines that these technologies should cost $200 per ton or less.

“Our artificial leaf system can be deployed outside the lab, where it has the potential to play a significant role in reducing greenhouse gases in the atmosphere thanks to its high rate of carbon capture, relatively low cost and moderate energy, even when compared to the best lab-based systems,” said Meenesh Singh, assistant professor of chemical engineering in the UIC College of Engineering and corresponding author on the paper.

The device is small enough to fit in a backpack and is modular by nature, meaning multiple units can potentially be stacked on top of one another to build out devices suited for different settings.

“It’s particularly exciting that this real-world application of an electrodialysis-driven artificial leaf had a high flux with a small, modular surface area,” Singh said. “This means that it has the potential to be stackable, the modules can be added or subtracted to more perfectly fit the need and affordably used in homes and classrooms, not just among profitable industrial organizations. A small module of the size of a home humidifier can remove greater than 1 kg of CO2 per day, and four industrial electrodialysis stacks can capture greater than 300 kg of CO2 per hour from flue gas.”

The research was published in the journal Energy & Environmental Science.

Source: University of Illinois Chicago

 


 

Source New Atlas