Search for any green Service

Find green products from around the world in one place

Underground Hydrogen Touted As ‘Significant’ Clean Energy Resource In First U.S. Hearing

Underground Hydrogen Touted As ‘Significant’ Clean Energy Resource In First U.S. Hearing

The Senate held the first congressional hearing on geologic hydrogen, a promising new form of clean energy generated naturally underground, that’s attracted growing interest and investment over the past year.

The Committee on Energy and Natural Resources, chaired by West Virginia’s Sen. Joe Manchin, heard testimony on Wednesday from the Energy Department’s advanced research unit, the U.S. Geological Survey and Pete Johnson, CEO of Koloma, the best-funded startup in the geologic hydrogen space. They concurred that more research is needed to identify the most abundant, promising sites and to develop techniques to amplify the natural production process, but were upbeat about the outlook.

“The potential for geologic hydrogen represents a paradigm shift in the way we think about hydrogen as an energy source,” Evelyn Wang, director of DOE’s Advanced Research Projects Agency-Energy told Senators. “This new source of hydrogen could lower energy costs and increase our nation’s energy security and supply chains.”

Federal scientists have begun working with universities and energy companies to find ways to map and locate potentially large pockets of hydrogen as current estimates are inadequate, said the Geological Survey’s Geoffrey Ellis. “The estimated in-place global geologic hydrogen resource ranges from 1000s to potentially billions of megatons,” he told the committee. “Given our understanding of other geologic resources, the vast majority of the in-place hydrogen is likely to be in accumulations that are either too far offshore or too small to ever be economically recovered. However, if even a small fraction of this amount could be recovered that would constitute a significant resource.”

Hydrogen is already heavily used in industry, including at oil refineries, chemical plants and as a key ingredient in ammonia for fertilizer. But nearly all of it is made by extracting hydrogen from natural gas, a dirty process that emits large amounts of carbon dioxide. Like green hydrogen — a new clean form of the element made from water and electricity, ideally from renewable power — the geologic variety is carbon-free. Scientists believe it’s generated in underground pockets of iron-rich rock in warm, moist conditions that are extremely common. Uniquely, it’s an energy source that’s just sitting there, not one that needs to be created.

“All other forms of hydrogen require more energy to produce than the hydrogen itself holds,” Koloma’s Johnson said. “This is incredibly clean energy. In multiple third-party lifecycle analyses and peer-reviewed journal articles, geologic hydrogen has been found to have a very low carbon footprint. In addition, geologic hydrogen will result in lower land use and lower water consumption than any other form of hydrogen.”

Johnson, Wang and Ellis also noted that drilling or mining for hydrogen leverages techniques used by the oil and gas industry. It’s also likely to aid domestic ammonia production.

“Hydrogen is a great feedstock and it’s used to create ammonia for fertilizer,” said Wang. “If we could really stimulate and extract this hydrogen and produce very large quantities at very low cost I think this could have significant implications to help and support farmers.”

Johnson provided no details about when Denver-based Koloma, which has raised over $300 million from investors including Bill Gates’s Breakthrough Energy Ventures, Energy Impact Partners and Amazon, would begin commercial extraction of hydrogen but is cautiously optimistic.

“This will take time, money and effort to figure out. Nobody has all the answers today,” he told the committee. “The early data looks promising and I believe that geologic hydrogen can play a very large role as we decarbonize the U.S. energy economy.”

 

 


 

 

Source    Forbes

 

Coffee Biochar Concrete Carbon Sequestration

Coffee Biochar Concrete Carbon Sequestration

Coffee is one of the most popular drinks worldwide; on average, 400 billion cups of coffee are consumed each year. As a result, approximately 18 million tonnes of coffee grounds are produced annually. Coffee grounds can be used for a variety of purposes. It can be used to fertilize your garden or added to compost. Coffee grounds can neutralize odors, can be used to exfoliate your skin, tenderize meats, and many other uses.

Despite all of these amazing uses for coffee grounds, the reality is that most of the coffee grounds produced actually end up in landfills; about 75% in fact. Rotting coffee grounds generate methane, a powerful greenhouse gas contributing to warming. Rotting coffee grounds also emit carbon dioxide, nitrous oxide, and ammonia. While there have been programs from coffee shops that will donate their coffee grounds to customers to use in their gardens (Starbucks has been part of the Grounds for Your Garden program since 1995), but most coffee shops are not implementing these initiatives.

Researchers from the Royal Melbourne Institute of Technology University in Australia have found a way to use coffee grounds on a larger scale and to eliminate the risk of them ending up in landfills. And that is to use coffee biochar concrete in the construction industry.

The researchers have developed concrete that is almost 30 percent stronger than traditional concrete by mixing in coffee-derived biochar. The coffee biochar was created using a low-energy process called pyrolysis. The organic waste is heated to 350 degrees Celsius without oxygen to avoid the risk of generating carbon dioxide. Under pyrolysis, organic molecules vibrate and break down into smaller components, creating biochar. This is a similar process that is used to roast unused beans to enhance their taste, except without the use of oxygen.

In coffee biochar concrete, about 15 percent of the sand they would use to make concrete is replaced with the coffee biochar, thus creating new concrete. The coffee biochar is finer than sand, and its porous qualities help to bind to organic material. Reducing the total use of sand in concrete will minimize the construction industry’s environmental footprint. It is said that over 50 billion metric tons of natural sand are used annually in construction. Sand mining significantly stresses ecosystems, including riverbeds and riverbanks, coffee biochar concrete can relieve some of that pressure on the environment.

The cement industry is the third largest source of industrial air pollution, including sulfur dioxide, nitrogen oxides, and carbon monoxide. Moreover, cement currently accounts for around 8% of global carbon dioxide emissions. Turning coffee- biochar into concrete will reduce the construction industry’s reliance on continuous mining of natural resources, making the industry more sustainable.

When introduced into concrete mixtures, the coffee biochar concrete was found to act as a microscopic carbon repository within the concrete matrix. The alkaline conditions within hardened concrete enable biochar to mineralize and firmly bind carbon dioxide into its structure over time. Concrete containing even a small percentage of spent coffee biochar was shown to sequester meaningful quantities of CO2 from the curing process and surrounding environment.

Utilizing waste coffee grounds to synthesize biochar for carbon sequestration could offer a sustainable way to offset concrete’s sizable carbon footprint while giving new purpose to spent grounds. With further research, coffee biochar concrete could provide a feasible carbon capture pathway for the construction industry.

The researchers estimate that if all the waste grounds produced in Australia annually could be converted into coffee biochar, it would amount to roughly 22,500 tonnes. Compare that to the 28 million tonnes of sand that are required to produce over 72 million tonnes of cement concrete in Australia. Just think: Australia has over 13 thousand coffee shops, whereas the United States has over 38 thousand coffee shops. If this project expands outside of Australia, coffee biochar concrete could significantly impact the environment and waste.

The research on coffee biochar concrete is still in the early stages; there is still a lot of testing to be done, but it shows that there are innovative and unique ways to reduce and repurpose organic landfill waste. Once the researchers can account for things like durability, the researchers will collaborate with local councils on future infrastructure projects, including the construction of walkways and pavements. Just think, we are one step closer to adding sustainability into the construction industry and one step closer to walking on coffee biochar concrete!

 

 


 

 

Source   Happy Eco News

GAC and Toyota develop ammonia engine for 90% CO2 reduction

GAC and Toyota develop ammonia engine for 90% CO2 reduction

Chinese state-owned manufacturer GAC has revealed a prototype engine that burns liquid ammonia, which could be an alternative fuel to electricity and hydrogen.

Developed in partnership with Toyota, the new-age ICE takes its inspiration from the maritime and haulage industries, which are exploring ammonia as an alternative to diesel for container ships and trucks.

Although not the first engine to be developed to run on ammonia, this is the first to be proposed for possible use in a passenger car.

At an annual technology presentation, GAC said it had overcome several issues, such as excess nitrogen emissions and an increase in combustion pressure compared with petrol engines.

“We’ve overcome the pain point of ammonia being difficult to burn quickly and put the fuel to use in the passenger car industry,” said Qi Hongzhong, an engineer at the GAC R&D centre in Guangzhou, China.

“Its value to society and for commercial uses are worth anticipating.”

Ammonia is a highly toxic substance used primarily as a fertiliser, but its combustible nature has brought it under the spotlight for future transport needs.

It possesses around half of the energy density of petrol, at 3.6kWh per litre, but emits no carbon, hydrocarbon or CO2 when combusted.

The traditional production method for ammonia is considered energy-intensive, but recent developments have led to small-scale production of ‘green’ ammonia, which uses renewable energy sources for carbon-free output.

More than two-thirds of the world’s annual production of ammonia is used in agriculture as fertiliser. It’s also used as a refrigerant gas and in the manufacturing of plastics, textiles, explosives and pesticides.

 

 


 

 

Source  Autocar

 

Zero-emissions aeroplanes that use AMMONIA as jet fuel rather than kerosene could take to the skies ‘within years’, British scientists claim

Zero-emissions aeroplanes that use AMMONIA as jet fuel rather than kerosene could take to the skies ‘within years’, British scientists claim
  • Ammonia burns less easily than kerosene-based fuels and so could be safer
  • To be used to power an engine, ammonia needs to be burnt along with hydrogen 
  • This can be released from ammonia itself by applying heat and a special catalyst 
  • Heat exchangers and catalytic reactors could be added to a jet with few changes
  • The ammonia-based fuel would only produce water vapour and nitrogen waste 

 

Zero-emissions aeroplanes could take to the skies ‘within years’ thanks to British scientists who are developing technology that will allow them to run on ammonia.

The collaboration between Oxford-based Reaction Engines and the UK Science and Technology Facilities Council could see ammonia replace kerosene as jet fuel.

Unlike kerosene-based jet fuel, ammonia is less of a fire hazard and burns without releasing the greenhouse gas carbon dioxide that contributes to climate change.

Just like conventional jet fuel, ammonia could be stored in the wings of planes — but, unlike its kerosene-based counterpart, ammonia does not burn so easily on its own, making it far less of a fire hazard.

In order to be burned in a combustion chamber, ammonia needs to be mixed with hydrogen — which can be released from ammonia itself using heat and a catalyst.

The researchers are proposing, therefore, to use a heat exchanger to warm up the fuel en route to the engine, followed by a so-called ‘cracking reactor’ to split some of the ammonia into hydrogen and nitrogen.

The fuel mix can then be ignited to drive the engine, with the only waste products being nitrogen, water vapour and perhaps some nitrogen oxides — although the latter can be removed from the exhaust using more ammonia.

‘The fuel could actually scrub its own emissions,’ Reaction Engines’ James Barth told MailOnline.

Given that the switch to ammonia would, at its minimum, only require minor additions to conventional jet engines, airlines could make use of the cleaner fuel without needing to completely replace their current plane fleets.

Ammonia does have a lower energy density than conventional jet fuel — meaning that aircraft powered by the novel fuel would have a slightly shorter range.

However, Dr Barth explained, ammonia fares well in comparison with other green aircraft solutions — including the more expensive fuel hydrogen and battery-power — and ammonia-powered planes would be perfectly suitable for short haul flights.

The switch may require an operational change, he added, but the team do not expect that the reduced range would prove to be a ‘showstopper’.

At present, ammonia is produced from natural gases like methane and atmospheric nitrogen — however, there is significant potential for the process to be made entirely renewable in the future by replacing the natural gas with electrolysed water.

At present, kerosene and ammonia are about the same price-per-tonne. While truly green production of ammonia will be more expensive, Dr Barth said that he expects to be offset by things like future carbon taxes.

‘We believe […] ammonia will be cost-competitive with synthetic fuels,’ he added.

Reaction Engines’ chief executive Mark Thomas told the Telegraph that the pollution reductions brought about by COVID-19-related movement restrictions could help bring about more demand for ‘green travel’.

‘We’ve been living under clean skies for the past few months,’ he added.

‘It is becoming clear that there is going to be a real technology drive.’

At present, the team are looking to design the heat changers and cracking reactor — and are seeking funding to develop a small-scale, ground-based demonstration to show that such an engine could be started and throttled up successfully.

‘There’s no reason why, [with] the right funding, we couldn’t have a small-scale demonstrator ready to test within a matter of years,’ Dr Barth said.

The news follows a recent drive for the UK to slash its carbon emissions in the interests of mitigating climate change — with the Government having promised to reach net zero emission by the year 2050.

 


 

By IAN RANDALL FOR MAILONLINE

Source: www.dailymail.co.uk