Search for any green Service

Find green products from around the world in one place

Hydrogen Vehicles Are on the Rise: Here’s What You Need to Know

Hydrogen Vehicles Are on the Rise: Here’s What You Need to Know

Hydrogen Vehicles Are on the Rise: Here’s What You Need to Know

The automotive industry is rapidly transitioning to alternative energy sources for fuel vehicles, considering the greenhouse gasses (GHGs) emitted every mile driven. Battery-electric cars are on the rise, but are better alternatives on the horizon?

Hydrogen emerged as a viable replacement for fossil fuels and could be the next big thing in the automotive industry. The rise of hydrogen fuel cells is coming sooner than you may think, so here’s what you need to know about these vehicles.

 

Rapid Market Growth

The future of hydrogen power is bright, as investors think it has massive potential for the automotive industry. Experts say the global hydrogen fuel cell vehicle market will have a compound annual growth rate of 43% until 2032, culminating in a $57.9 billion value. Automakers understand the severity of today’s climate crisis and use any means necessary to advance their sustainability goals.

 

Harnessing Hydrogen

Hydrogen is unstable, as it reacts with other atoms to form compounds. So, how can you harness this chemical element to be safe for your vehicle? Scientists typically use these methods for hydrogen fuel production:

  • Thermal: The Department of Energy (DoE) says about 95% of today’s hydrogen comes from repurposed natural gas. Scientists combine steam and hydrocarbon fuels to produce hydrogen fuel, requiring high temperatures and attention to detail.
  • Solar: Using renewable energy to produce clean fuel is smart, so experts have used solar power for hydrogen production. For instance, they can harness hydrogen fuel using bacteria and its natural photosynthetic activity.
  • Biology: Bacteria are also helpful for hydrogen fuel production through biological reactions. You can use microbes to break down biomass and wastewater, and these tiny organisms aren’t energy-intensive, as they harness sunlight for power.

 

Refueling Stations

Hydrogen fuel is already available if you live on the West Coast, as most of the existing stations are in California — primarily in Los Angeles and the Bay Area. You can also enjoy this alternative energy source in the Pacific Ocean at the Hawaii Natural Energy Institute. As hydrogen fuel grows in demand, you’ll see more opportunities to fill up with it.

The DoE says the United States has 59 retail hydrogen-fueling stations, but more projects are on the way. Fleet companies may have private areas for fueling their vehicles, especially as long-haul trucks convert to hydrogen fuel.

 

Can Semi-Trucks Use Hydrogen Fuel?

Battery-electric motors are a concern for larger vehicles like light-duty and long-haul trucks. These machines must be powerful enough to propel heavy machines for long distances, but their weight drains energy quickly. Will hydrogen fuel be a solution? The logistics industry has focused on this alternative fuel source for greener highways.

For instance, in 2025, Kenworth will begin full-scale production of Class 8 T680 hydrogen fuel cell electric trucks in collaboration with Toyota. The heavy-duty truck manufacturer will deliver its first hydrogen-powered vehicles this year and then expand production.

While the fuel source changes, the typical qualities in hydrogen-powered trucks do not. This Kenworth Class 8 T680 truck has a max payload of 82,000 pounds, demonstrating its ability to carry a significant amount of goods.

The truck uses Toyota’s 310kW Dual Motor Assembly, as the Japanese automaker has prioritized hydrogen fuel research in the last decade. It recently released the second-generation Mirai, which mixes hydrogen and oxygen to produce electricity.

States like California have imposed strict requirements for long-haul trucks and other vehicles, so hydrogen-powered trucks could be the answer for sustainability and dependable transportation. Kenworth tested hydrogen fuel cell technology at the Port of Los Angeles in 2022 and used its success to build the Class 8 T680 semi-truck. Continued success will likely mean further North American expansion.

 

Powering Outside the Highways

Hydrogen has become a viable option for passenger cars and even long-haul trucks in its early stages. However, highway vehicles are not the only method of transportation using hydrogen power. Last year, North America debuted its first hydrogen train in Quebec, Canada. This machine uses about 50 kg of hydrogen daily and eliminates dependence upon fossil fuels for these trips.

Hydro-Quebec provides energy for the train, enabling it to travel about 90 km between Quebec City and Baie-Saint-Paul. Emissions are less of a worry for the train, as you only see water vapor emerging from its pipes.

 

What Are the Benefits of Hydrogen-Powered Vehicles?

Hydrogen-powered vehicles are likely the future, as automakers heavily invest in the technologies required for these machines. Driving a hydrogen-powered car delivers these four benefits.

1. Reducing Emissions

Auto manufacturers like Toyota are pushing hydrogen fuel technology because of its eco-friendliness. The only emissions are water vapor and heat, thus making them better for the environment. Turning hydrogen fuel cells mainstream would reduce the amount of GHGs emitted daily, which is crucial to combating climate change.

The transition to hydrogen fuel cells would significantly boost the logistics industry, considering how many long-haul trucks hit the road daily. Research shows medium and heavy-duty vehicles in the U.S. emit over 400 million metric tons of GHGs. Converting trucks worldwide would help the surrounding environment and improve health for each road traveled.

2. Easy Transition

While converting existing trucks to hydrogen fuel cells takes time, the transition might be easier than you think. Logistics companies can keep their current gas transport and storage mechanisms, repurposing them for hydrogen fuel.

Additionally, truck owners wouldn’t have to jump through hoops to let their vehicles take hydrogen power. Retrofitting combustion engines for hydrogen power is more straightforward than with electric motors, especially with heavy trucks.

3. Beating Battery-Powered Vehicles

Battery-electric trucks are best for short drives due to their limited range. However, logistics companies need their vehicles to travel hundreds of miles each trip to keep deliveries on time. Hydrogen-powered trucks allow fleet owners to combine sustainability and efficient travel due to their range.

For instance, the Kenworth T680 hydrogen fuel-powered truck ranges up to 450 miles, depending on the driving conditions. Regardless, it’s more than you’d get from an electric truck. In fact, the Kenworth machine boasts one of the highest ranges for any semi-truck using alternative energy sources.

4. Rapid Refueling

Another significant advantage of hydrogen trucks over battery-electric vehicles is the quick refueling. Fully electric trucks will need to wait for a few hours before they can head back on the road, causing trips to be longer than scheduled. However, hydrogen machines only require a few minutes to fill up, greatly boosting logistics companies. The Kenworth hydrogen fuel cell vehicle lets fleet owners increase uptime and reduce lead times.

Foreshadowing a Bright Future

The automotive industry is pushing for fossil fuel alternatives to help the planet’s transportation sector. While battery-electric technology has existed for over a decade, hydrogen fuel cells are another way for automakers to produce cleaner vehicles.

The future of hydrogen vehicles is bright as researchers continue to improve the technology and bring it into the mainstream.

 

 

 


 

 

 

Source  Happy Eco News

Underground Hydrogen Touted As ‘Significant’ Clean Energy Resource In First U.S. Hearing

Underground Hydrogen Touted As ‘Significant’ Clean Energy Resource In First U.S. Hearing

The Senate held the first congressional hearing on geologic hydrogen, a promising new form of clean energy generated naturally underground, that’s attracted growing interest and investment over the past year.

The Committee on Energy and Natural Resources, chaired by West Virginia’s Sen. Joe Manchin, heard testimony on Wednesday from the Energy Department’s advanced research unit, the U.S. Geological Survey and Pete Johnson, CEO of Koloma, the best-funded startup in the geologic hydrogen space. They concurred that more research is needed to identify the most abundant, promising sites and to develop techniques to amplify the natural production process, but were upbeat about the outlook.

“The potential for geologic hydrogen represents a paradigm shift in the way we think about hydrogen as an energy source,” Evelyn Wang, director of DOE’s Advanced Research Projects Agency-Energy told Senators. “This new source of hydrogen could lower energy costs and increase our nation’s energy security and supply chains.”

Federal scientists have begun working with universities and energy companies to find ways to map and locate potentially large pockets of hydrogen as current estimates are inadequate, said the Geological Survey’s Geoffrey Ellis. “The estimated in-place global geologic hydrogen resource ranges from 1000s to potentially billions of megatons,” he told the committee. “Given our understanding of other geologic resources, the vast majority of the in-place hydrogen is likely to be in accumulations that are either too far offshore or too small to ever be economically recovered. However, if even a small fraction of this amount could be recovered that would constitute a significant resource.”

Hydrogen is already heavily used in industry, including at oil refineries, chemical plants and as a key ingredient in ammonia for fertilizer. But nearly all of it is made by extracting hydrogen from natural gas, a dirty process that emits large amounts of carbon dioxide. Like green hydrogen — a new clean form of the element made from water and electricity, ideally from renewable power — the geologic variety is carbon-free. Scientists believe it’s generated in underground pockets of iron-rich rock in warm, moist conditions that are extremely common. Uniquely, it’s an energy source that’s just sitting there, not one that needs to be created.

“All other forms of hydrogen require more energy to produce than the hydrogen itself holds,” Koloma’s Johnson said. “This is incredibly clean energy. In multiple third-party lifecycle analyses and peer-reviewed journal articles, geologic hydrogen has been found to have a very low carbon footprint. In addition, geologic hydrogen will result in lower land use and lower water consumption than any other form of hydrogen.”

Johnson, Wang and Ellis also noted that drilling or mining for hydrogen leverages techniques used by the oil and gas industry. It’s also likely to aid domestic ammonia production.

“Hydrogen is a great feedstock and it’s used to create ammonia for fertilizer,” said Wang. “If we could really stimulate and extract this hydrogen and produce very large quantities at very low cost I think this could have significant implications to help and support farmers.”

Johnson provided no details about when Denver-based Koloma, which has raised over $300 million from investors including Bill Gates’s Breakthrough Energy Ventures, Energy Impact Partners and Amazon, would begin commercial extraction of hydrogen but is cautiously optimistic.

“This will take time, money and effort to figure out. Nobody has all the answers today,” he told the committee. “The early data looks promising and I believe that geologic hydrogen can play a very large role as we decarbonize the U.S. energy economy.”

 

 


 

 

Source    Forbes

 

GAC and Toyota develop ammonia engine for 90% CO2 reduction

GAC and Toyota develop ammonia engine for 90% CO2 reduction

Chinese state-owned manufacturer GAC has revealed a prototype engine that burns liquid ammonia, which could be an alternative fuel to electricity and hydrogen.

Developed in partnership with Toyota, the new-age ICE takes its inspiration from the maritime and haulage industries, which are exploring ammonia as an alternative to diesel for container ships and trucks.

Although not the first engine to be developed to run on ammonia, this is the first to be proposed for possible use in a passenger car.

At an annual technology presentation, GAC said it had overcome several issues, such as excess nitrogen emissions and an increase in combustion pressure compared with petrol engines.

“We’ve overcome the pain point of ammonia being difficult to burn quickly and put the fuel to use in the passenger car industry,” said Qi Hongzhong, an engineer at the GAC R&D centre in Guangzhou, China.

“Its value to society and for commercial uses are worth anticipating.”

Ammonia is a highly toxic substance used primarily as a fertiliser, but its combustible nature has brought it under the spotlight for future transport needs.

It possesses around half of the energy density of petrol, at 3.6kWh per litre, but emits no carbon, hydrocarbon or CO2 when combusted.

The traditional production method for ammonia is considered energy-intensive, but recent developments have led to small-scale production of ‘green’ ammonia, which uses renewable energy sources for carbon-free output.

More than two-thirds of the world’s annual production of ammonia is used in agriculture as fertiliser. It’s also used as a refrigerant gas and in the manufacturing of plastics, textiles, explosives and pesticides.

 

 


 

 

Source  Autocar

 

Masdar: Using technology to power a sustainable future

Masdar: Using technology to power a sustainable future
Renewable energy company Masdar has been making strides towards its sustainability goals by utilising the latest technology

As a global leader in renewable energy and green hydrogen, Masdar has pioneered commercially viable solutions in clean energy, sustainable real estate and clean technology in the UAE and around the world for over a decade.

Headquartered in Abu Dhabi, UAE, the business is currently developing large-scale renewable energy initiatives, in a bid to drive the progression of clean technologies and further grow technology in the renewable energy sector. In doing so, Masdar is focused on creating new long-term revenue streams for the UAE.

How is Masdar utilizing technology to boost sustainable energy?

Committed to advancing clean-tech innovation, Masdar utilises technology to enhance the renewable energy sector.

Masdar hosts a range of wind farms in its offshore project portfolio, including sites in London Array and the Dudgeon Offshore Wind Farm in the United Kingdom. The business has also partnered with Hywind Scotland, the world’s first floating offshore wind farm.

Additionally, Masdar deploys solar photovoltaic (PV) technology in utility-scale and off-grid solar power plants and rooftop systems, including monocrystalline silicon panels, polycrystalline silicon panels, and thin-film panels.

Depending on the solar potential, geographical location, and financial requirements of a specific solar PV project, a suitable PV system is implemented to meet the project’s needs.

Likewise, concentrated solar power (CSP) systems – which use mirrors to focus a large area of sunlight onto much smaller areas – are used to convert concentrated light into heat, to drive a heat engine connected to an electrical power generator. CSP systems have become known as a promising solar power technology for large-scale power generation.

When CSP and thermal energy storage (TES) are used together, it is capable of producing constant power for up to 24 hours a day.

Masdar’s sustainability commitments

With the aim of investing and actively supporting the development of young people, Masdar strives to help support the sustainability leaders of tomorrow through its Youth 4 Sustainability (Y4S).

His Highness Sheikh Khaled bin Mohamed bin Zayed Al Nahyan, Crown Prince of Abu Dhabi invested in the initiative, ensuring it aligned with the United Nations Sustainable Development Goals to bolster the nation’s sustainability efforts.

By 2030, Y4S aims to reach up to one million youth, creating awareness of the skills needed for future jobs in sustainability.

 

 


 

 

Source Sustainability

Berrow-Zeice Hydrogen; Clean Retrofits for Diesel

Berrow-Zeice Hydrogen; Clean Retrofits for Diesel

Berrow-Zeice Hydrogen System is Emissions Free

Steve Berrow, who is located in South Wales, has expressed his elation about Innovate UK’s involvement in the project. He claims that the Berrow-Zeice hydrogen system, with its zero-emissions technology using hydrogen, is a “thing of great beauty.” Integrating the fuel system into a conventional combustion engine can provide an emissions-free solution, significantly reducing carbon emissions. The system’s practical applications are enormous, making it a game-changer in the field of hydrogen fuel technology.

Unlike a hydrogen fuel cell, which is a device that converts hydrogen into electricity that can then be used to power an electric motor, the Berrow-Zeice hydrogen fuel system is a unique hydrogen-powered fuel system that can be applied to any petrol or diesel engine. It takes in no air and delivers no exhaust resulting in zero emissions, making it a game-changing emissions-free system. The technology ensures greater efficiency for drivers than other current zero-emission offerings and has the potential to reduce carbon emissions significantly.

This innovation can potentially revolutionize the over 2 billion internal combustion engines currently in use worldwide, creating several multitrillion-dollar revenue streams by converting current rolling stock to this emissions-free system. The system’s potential to be applied to the 2 billion plus internal combustion engines already in existence presents a massive revenue stream opportunity for investors.

Innovate UK’s substantial grant further validates the patent-pending innovation, providing increased confidence for potential investors. Overall, the potential for the Berrow-Zeice fuel system to create a massive reduction in carbon emissions while providing a more efficient and cost-effective solution for drivers presents a compelling investment opportunity.

Most current zero-emission vehicles run on either lithium batteries or hydrogen cells, both of which have negative environmental consequences when manufacturing new automobiles. In addition, there is the issue of “electric stress” caused by batteries and the high cost of hydrogen cells for consumers.

The BERROW-ZEICE system offers a “100% fuel burn” to the engine, which provides greater efficiency for drivers than other current zero-emission solutions, potentially reducing carbon emissions worldwide. This technology will significantly impact public health and the environment by reducing the harmful effects of emissions like Carbon dioxide (CO2), Carbon monoxide (CO), Nitrogen oxides (NOx), Particulate matter (PM), and other unburned toxins in the breathable environment.

For more information on Berrow-ZEICE, visit their website at www.berrow-zeice.com.

Innovate UK is a UK-based innovation agency that provides financial and advisory support to clean technology startups and other innovative businesses. The agency has supported the Berrow-Zeice hydrogen fuel system with a substantial grant, which will facilitate the conversion and commercialization of a large power generator, paving the way for a wider commercial rollout across static and mobile applications.

Innovate UK’s support for Berrow-Zeice underscores its commitment to fostering the growth of the clean technology sector and driving economic growth by supporting innovative ideas and solutions. By connecting businesses with partners, customers, and investors that can help them turn their ideas into successful products and services, Innovate UK plays a crucial role in helping to realize the potential of new technologies that can address global challenges such as climate change and air pollution.

 

 


 

 

Source  Happy Eco News

Hydrogen’s potential in the net-zero transition

Hydrogen’s potential in the net-zero transition

Hydrogen as a climate solution is generating a lot of excitement right now. Approximately $10 billion worth of hydrogen projects are being announced each month, based on activity over the past six months. Policy packages such as the recent Inflation Reduction Act in the United States and the Green Deal Industrial Plan in Europe support hydrogen production and use. According to McKinsey research, demand is projected to grow four- to sixfold by 2050. Hydrogen has the potential to cut annual global emission2050s by up to 20 percent by 2050.

Today, most hydrogen is produced with fossil fuels. This type is commonly known as grey hydrogen, which is used mostly for oil and gas refining and ammonia production as an input to fertilizer. To maximize hydrogen’s potential as a decarbonization tool, clean hydrogen production must be scaled up. One variety of clean hydrogen is known as green hydrogen, which can be made with renewables instead of fossil fuels. Another variety, often called blue hydrogen, can be produced with fossil fuels combined with measures to significantly lower emissions, such as carbon capture, utilization, and storage. Clean hydrogen has the potential to decarbonize industries including aviation, fertilizer, long-haul trucking, maritime shipping, refining, and steel.

Total planned production for clean hydrogen by 2030 stands at 38 million metric tons annually—a figure that has more than quadrupled since 2020—but there is a long way to go to meet future demand. According to McKinsey analysis, demand for clean hydrogen could grow to between 400 million and 600 million metric tons a year by 2050.

To scale clean hydrogen, three things must happen. First, production costs need to come down so that hydrogen can compete on price with other fuels. One way to keep costs down is by producing hydrogen in locations with abundant, cheaper renewable energy—where the wind blows or the sun shines. While renewables development has accelerated in recent years, a lack of available land could become an issue for the deployment of renewables and could limit location options for green-hydrogen producers. Constructing plants for both renewable generation and green-hydrogen production has become more expensive recently because of increased material and labor costs and constrained supply chains.

“Approximately $10 billion worth of hydrogen projects are being announced each month, based on activity over the past six months.”

Second, building up infrastructure, particularly for transportation of hydrogen, will be key. The most efficient way to transport hydrogen is through pipelines, but these largely need to be built or repurposed from current gas infrastructure. Investment is critical in this and other areas across the value chain, including electrolyzer capacity (electrolyzers use electricity to produce green hydrogen) and hydrogen refueling stations for hydrogen-powered trucks.

Third, more investments will be needed to help advance this solution. Our work with the Hydrogen Council, a CEO-led group with members from more than 140 companies, has shown that achieving a pathway to net zero would require $700 billion in investments by 2030. Despite the recent momentum, McKinsey research last year showed a $460 billion investment gap. Additionally, many announced projects still need to clear key hurdles before they can scale. Producers of clean hydrogen, for example, are looking to address the commercial side of investment risk by solidifying future demand, often in the form of purchase agreements.

A set of actions can help accelerate the hydrogen opportunity, to realize its decarbonization potential and the growth opportunity for businesses. Progress will likely require collaboration among policy makers, industries, and investors. Policy makers can continue supporting the hydrogen economy through measures such as production tax credits or by setting uptake targets. These actions should help boost private investors’ confidence in the future markets for hydrogen and hydrogen-based products. Industry can increase capacities, such as by ramping up production of electrolyzers, and build partnerships through the value chain. Investors can help industry by structuring and financing new ventures, as well as by developing standards for how hydrogen projects can be assessed and how risks can be managed.

As the energy transition unfolds, hydrogen will increasingly be a consideration for both businesses and governments. While the challenges to scaling hydrogen are real, so are the opportunities.

 

 


 

 

By  Markus Wilthaner

Source  McKinsey & Company

 

Kimberly-Clark firms up plans for three UK-based green hydrogen projects

Kimberly-Clark firms up plans for three UK-based green hydrogen projects

The firm, which owns brands such as Andrex and Huggies, is celebrating the fact that the project near Barrow-in-Furness was successful in securing a place on the UK Government’s Hydrogen Business Model Strategy Shortlist. The Shortlist was announced last week as part of a bumper day of green policy publications, detailing 20 projects set to share public funding support and benefit from streamlined planning processes.

Led by Carlton Power, the project is seeking to co-locate 35MW of electrolyser facilities and a 40MW energy storage system at the Cumberhead West Wind Farm. The 126MW wind farm is currently under construction and completion is expected later this year. Green hydrogen production should then be able to commence in 2025.

Kimberly-Clark is planning to offtake green hydrogen from the project to serve its paper mill in Cumbria, replacing natural gas. This plan was first announced to the general public in the summer of 2022, but the confirmation of Government support is a significant step forward.

Until the hydrogen production begins, Kimberly-Clark will offtake renewable electricity from the wind farm via a Power Purchase Agreement (PPA). It will use this electricity at three manufacturing sites and two distribution centres across the UK.

HYRO

Two additional green hydrogen projects involving Kimberly-Clark were also detailed on the UK Government’s Hydrogen Business Model Strategy Shortlist – one in Northfleet, Kent, and the other in Flint, North Wales.

Both of these projects are being led by HYRO, a joint venture between RES and Octopus Energy’s generation arm. HYRO’s long-term vision is to invest £3bn green hydrogen in the UK.

The two electrolyser projects will have a combined capacity of 22.5MW. As with the project in Cumbria, they will use renewable electricity to electrolyse water, thus producing green hydrogen. The hydrogen will be stored and fed into hydrogen-ready boilers within Kimberly Clark sites. A timeline has not yet been announced for the completion of the renewable arrays nor the electrolysers.

Kimberly-Clark’s managing director for the UK and Ireland, Dan Howells, said: “A lot of hard work has gone into developing the green hydrogen projects and it’s fantastic to see the UK government selecting them for the funding shortlist.

“These developments represent a significant stepping stone towards our big ambition to move solely to renewable energy to manufacture Andrex, Kleenex, Huggies, WypAll and Scott in the UK by 2030. We can only reach our decarbonization goals via innovative partnerships and cutting-edge technology.”

Other manufacturers exploring hydrogen as a natural gas replacement in the UK include Unilever, Pilkington Glass, Quorn Foods, Kelloggs, PepsiCo, Essity, Encirc and Jaguar Land Rover.

 

 


 

 

Source edie

 

BMW’s hydrogen-powered cars come off the assembly line

BMW’s hydrogen-powered cars come off the assembly line
A new day has dawned at BMW after it was announced that the Munich-based automobile manufacturer has launched a pilot fleet of hydrogen vehicles known as the iX5 Hydrogen model.

The car will use fuel cells developed by Toyota, this new car, a milestone in the use of hydrogen power, can reach speeds of up to 112 miles per hour.

The hydrogen itself is stored in two tanks which can be refilled in a matter of three to four minutes. Once the tanks are filled, the vehicle has displayed a range of 313 miles in the Worldwide Harmonised Light Vehicle Test Procedure.

The car is being assembled at a factory in Munich.

While it enters service in 2023, initially the rollout will be relatively small: fewer than 100 cars will be coming off the assembly line and sent abroad for trialling and demonstrations for sundry target groups.

 

A path to the future

The star of hydrogen appears to be rising in the automotive world. BMW is one of the larger manufacturers looking to innovate with the element, but others include Nissan, Hyundai and the aforementioned Toyota.

Commented BMW Chairman of the Board of Management Oliver Zipse: “Hydrogen is a versatile energy source that has a key role to play in the energy transition process and, therefore, in climate protection. After all, it is one of the most efficient ways of storing and transporting renewable energies.

“We should use this potential to also accelerate the transformation of the mobility sector. Hydrogen is the missing piece in the jigsaw when it comes to emission-free mobility. One technology on its own will not be enough to enable climate-neutral mobility worldwide.”

 

 


 

 

Source Sustainability

Hydrogen-powered drone unveiled by HevenDrones

Hydrogen-powered drone unveiled by HevenDrones

Israeli company HevenDrones has launched a new line of hydrogen-powered drones. These will have capabilities in both the commercial and defence spheres. Among the notable uses to which they can be put are reforestation, emergency response, delivery and long-range intelligence gathering missions.

The H2D55, as it is known, launched today and will have five times the energy efficiency capabilities when compared to lithium battery-powered devices. As well, the H2D55 will be able to fly for up to 100 minutes and carry a payload of 7kg.

And the H2D55 is the first in a series: over the next nine months, two more will be released that have a longer range and an increased payload capacity.

Among other features, the H2D55 control system is replete with multiple gyroscopes, as well as supporting algorithms, which increase its capabilities in flight.

 

Good for the environment, good for the wallet

The new model seeks to address both the range and payload capacity issues that drone operators have found with lithium battery-powered drones. A press release notes that without the need to regularly change batteries, long-term ownership costs will decline

Speaking on the new offering, HevenDrones Founder and CEO Bentzion Levinson commented: “We are delighted to bring hydrogen-powered drones to the global market and we are excited to see the expanding range of use-class across numerous industries.”

Levinson then noted the benefits to the environment that the new drones could provide:

“Not only do actionable drones add immense value to key areas of our economy and society, but we are working to ensure that this value is compounded by reduced carbon emissions and general energy efficiency by using hydrogen. The H2D55 is out first step towards achieving this vision.”

The H2D55 is due to be unveiled at IDEX in Abu Dhabi, UAE later this month.

 

 


 

 

Source Sustainability

Airbus picks motor supplier for hydrogen engine prototype

Airbus picks motor supplier for hydrogen engine prototype

Airbus has picked a Japanese-owned French manufacturer to develop electric motors for a planned prototype hydrogen-powered engine.

The airframer is intending to bring a commercial zero-emission aircraft to market by around 2035, and the motor will be part of a proposed hydrogen fuel-cell energy system.

Airbus has selected Nidec Leroy-Somer – which is part of the Japanese-based Nidec Group – to develop the motor.

The design, engineering and prototype work will be carried out at the company’s Angeouleme facility, with the aim of producing a prototype to meet high safety, reliability, power and efficiency requirements while remaining at the lowest weight.

Initial ground-based testing will validate the technology before the project moves to in-flight testing.

Nidec Leroy-Somer commercial and industrial motors division president Jean-Michal Condamin says the project is “ambitious”.

“This important milestone for more sustainable mobility, presents several challenges that we are committed to overcome, to serve the global community,” he adds.

Chief technology officer Eric Coupart says the company will offer “world-class” research and development capabilities to provide Airbus with “sustainable and powerful smart technologies”.

Airbus has shown off various concepts for its ‘ZEROe’ future hydrogen-powered aircraft programme.

 

 


 

 

Source FlightGlobal