Search for any green Service

Find green products from around the world in one place

A very Finnish thing’: Big sand battery to store wind and solar energy using crushed soapstone

A very Finnish thing’: Big sand battery to store wind and solar energy using crushed soapstone

The battery will be able to store a week’s heat demand in winter – how does it work?

A huge sand battery is set to slash the carbon emissions of a Finnish town.

The industrial-scale storage unit in Pornainen, southern Finland, will be the world’s biggest sand battery when it comes online within a year.

Capable of storing 100 MWh of thermal energy from solar and wind sources, it will enable residents to eliminate oil from their district heating network, helping to cut emissions by nearly 70 percent.

“It’s exciting to build a large-scale thermal energy storage, which will also act as a primary production plant in Pornainen’s district heating network,” says Liisa Naskali, COO at Polar Night Energy, the company behind the innovation.

“This is a significant step in scaling up the sand battery technology.”

 

Sand batteries are getting bigger in Finland

The new 1 MW sand battery has a precursor. In May 2022, Polar Night Energy rigged a smaller design to a power station in Kankaanpää town.

Launched just as Russia cut off gas supplies in retaliation for Finland joining NATO, the project was a timely example of how renewable energy could be harnessed in a new way.

Euronews Green previously spoke to the young Finnish founders, Tommi Eronen and Markku Ylönen, who engineered the technology.

“We were talking about how – if we had the liberty to design a community for ourselves – how could we solve the energy problem in such a confined environment?” Markku said of the inspiration behind Polar Night Energy in 2018.

“Then quite quickly, especially here in the north, you run into the problem of energy storage if you’re trying to produce the energy as cleanly as possible.”

The friends started playing around with ideas, landing on sand as an affordable way to store the plentiful electricity generated when the sun is shining, or the wind blowing at a high rate.

Finding a way to store these variable renewables is the crux of unleashing their full potential. Lithium batteries work well for specific applications, explains Markku, but aside from their environmental issues and expense, they cannot take in a huge amount of energy.

Grains of sand, it turns out, are surprisingly roomy when it comes to energy storage.

The sand battery in Pornainen will be around 10 times larger than the one still in operation at Vatajankoski power plant in Kankaanpää. The start-up also previously connected a pilot plant to the district heating network of Tampere city.

 

So how do sand batteries work exactly?

It’s quite a simple structure to begin with, Polar Night Energy said of its prototype. A tall tower is filled with low-grade sand and charged up with the heat from excess solar and wind electricity.

This works by a process called resistive heating, whereby heat is generated through the friction created when an electrical current passes through any material that is not a superconductor. The hot air is then circulated in the container through a heat exchanger.

The sand can store heat at around 500C for several days to even months, providing a valuable store of cheaper energy during the winter. When needed, the battery discharges the hot air – warming water in the district heating network. Homes, offices and even the local swimming pool all benefit in Kankaanpää, for example.

“There’s really nothing fancy there,” Markku says of the storage. “The complex part happens on the computer; we need to know how the energy, or heat, moves inside the storage, so that we know all the time how much is available and at what rate we can discharge and charge.”

 

How will the sand battery serve residents in Pornainen?

Having refined its charging algorithms, Polar Night Energy is now ready to scale up the storage tech in Pornainen.

Once completed, the new battery will be integrated with the network of Loviisan Lämpö, the Finnish heating company that supplies district heating in the area.

“Loviisan Lämpö is moving towards more environmentally friendly energy production. With the Sand Battery, we can significantly reduce energy produced by combustion and completely eliminate the use of oil,” says CEO Mikko Paajanen.

The project also aligns with Pornainen’s plans for carbon neutrality. Many of its buildings, including the comprehensive school, town hall, and library, rely on district heating.

Mayor of Pornainen Antti Kuusela says the municipality “welcomes all innovative development projects that reduce emissions in district heating operations and contribute to network expansion.”

In total, the sand battery is expected to knock off 160 tonnes of carbon dioxide equivalent emissions per year. As well as weaning the town off oil, woodchip burning is expected to drop by 60 per cent as a result.

The battery’s thermal energy storage capacity equates to almost one month’s heat demand in summer and a one-week demand in winter in Pornainen, Polar Night Energy says.

Construction and testing of the 13 metres high by 15 metres wide battery is estimated to take around 13 months, meaning it should be keeping residents warm well before winter 2025.

 

Is sand a sustainable material?

“We wanted to find something that can be sourced nearly everywhere in the world,” Markku said. But is sand as ubiquitous as we might think?

Demand for the construction material is set to soar by 45 per cent in the next 40 years, according to a recent Dutch study. Building sand is typically extracted from rivers and lakes, and ‘sand pirates’ are speeding up its loss from these ecosystems.

But as far as the Finnish engineers are concerned, it doesn’t really matter where the sand comes from. Though builders’ sand was used initially (to limit transport emissions), sand batteries work with any sand-like material that has a high enough density, within certain thermodynamic parameters.

In Pornainen, Polar Night Energy has found a sustainable material in crushed soapstone; a by-product of a Finnish company’s manufacture of heat-retaining fireplaces.

“Tulikivi is a well-known and traditional company,” says Naskali. “The soapstone they use is a very Finnish thing.”

“We always choose the thermal energy storage medium based on the customer’s needs. Examining and testing different materials is crucial for us to use materials that are suitable in terms of properties, cost-effectiveness, and promotion of circular economy,” she adds.

Polar Night Energy has big ambitions to take its technology worldwide.

As Markku told us back in 2022, “we want to build a hundred times larger storages around the world as fast as possible.”

 

 


 

 

Source  euronews.green

Green Roads: Paving the Way for Ecological Sustainability

Green Roads: Paving the Way for Ecological Sustainability

Transportation infrastructure plays a pivotal role in our daily lives, connecting communities and facilitating the movement of goods and people. However, the conventional construction and maintenance of roads often come at a significant environmental cost. In response to the urgent need for sustainable development, the concept of “green roads” has emerged as a promising approach to mitigate the environmental impact of roadways. This article explores the key features of green roads and delves into their serious ecological value.

One of the fundamental principles of green roads is the implementation of robust erosion control measures. Traditional roads often contribute to soil erosion, degrading landscapes and harming ecosystems. Green roads address this issue by incorporating erosion control blankets, stabilizing vegetation, and adopting innovative techniques to prevent soil runoff. By doing so, they preserve the integrity of the surrounding soil and safeguard water bodies from the adverse effects of sedimentation.

 

Vegetated Roadside Areas:

A distinctive feature of green roads is the integration of vegetated strips alongside or within the road infrastructure. These areas serve a dual purpose—acting as wildlife corridors and promoting biodiversity. Rather than isolating ecosystems, green roads encourage the creation of connected habitats. These vegetated strips become essential pathways for wildlife, facilitating movement and minimizing the isolation of populations. The result is a harmonious coexistence between road infrastructure and the natural environment.

 

Wildlife Crossings:

Recognizing the impact of roads on wildlife, green roads go a step further by incorporating wildlife crossings. These purpose-built structures, such as overpasses or underpasses, provide safe passages for animals to traverse roads without the risk of collisions. Wildlife crossings contribute significantly to the conservation of biodiversity, ensuring the protection of various species and maintaining the delicate balance of local ecosystems.

 

Permeable Surfaces:

Conventional road surfaces often exacerbate water-related environmental challenges by causing increased runoff and hindering groundwater recharge. Green roads tackle this issue by embracing permeable surfaces. These surfaces, made from materials that allow water to pass through, reduce runoff and promote natural infiltration. By mimicking natural drainage patterns, green roads contribute to sustainable water management, minimizing the adverse effects on aquatic ecosystems.

 

Native Plantings:

A cornerstone of green roads is the incorporation of native plantings along road corridors. Unlike invasive species, native vegetation is well-adapted to the local climate and soil conditions, providing a habitat that supports local wildlife. Green roads actively contribute to the restoration of natural ecosystems by reintroducing indigenous plant species. This strategic approach not only enhances biodiversity but also fosters a sense of place, preserving the unique flora of the region.

 

Low-Impact Design:

Green roads adhere to the principles of low-impact design, aiming to minimize disruptions to natural drainage patterns and overall environmental disturbance. By carefully considering the topography and ecology of the area, green roads seek to harmonize with the surrounding landscape. This approach mitigates the ecological footprint of road construction and ensures that the natural balance of ecosystems remains intact.

 

Sustainable Materials:

The materials used in road construction significantly impact the overall environmental footprint. Green roads prioritize the use of sustainable materials, including recycled asphalt, eco-friendly binders, and other environmentally conscious alternatives. By reducing the reliance on finite resources and incorporating recycled materials, green roads contribute to a circular economy and set a precedent for sustainable practices in the construction industry.

 

Five notable examples of Green Roads are:

The Ray is an innovative, sustainable highway project located along a stretch of Interstate 85 in Georgia, USA. It serves as a living laboratory for testing and implementing cutting-edge technologies and practices focused on sustainability and environmental stewardship. The Ray incorporates solar road technologies, energy-harvesting pavement, and pollinator-friendly vegetation along the highway. It also includes an electric vehicle charging station powered by renewable energy sources.

Solar Roadways is a pioneering project that aims to transform traditional road surfaces into solar panels. The concept involves replacing conventional asphalt with solar panels capable of generating renewable energy and providing additional functionalities. Solar Roadways integrate solar cells, LED lights for road markings, and a heating element to prevent ice accumulation. The generated electricity can be used to power infrastructure and contribute to the grid.

The Netherlands is at the forefront of sustainable road infrastructure with its Smart Highway initiative. These roads incorporate innovative technologies to enhance safety, energy efficiency, and environmental sustainability. Examples include glow-in-the-dark road markings, dynamic paint that responds to temperature changes, and roads that generate energy through embedded piezoelectric materials activated by passing vehicles.

The Green Road, or “Ecopista,” is a sustainable transport initiative in Portugal that transforms abandoned railway lines into eco-friendly cycling and walking paths. One notable example is the Ecopista do Dão or Green Road. The Green Road promotes non-motorized transportation, biodiversity conservation, and the revitalization of disused railway infrastructure. It offers a scenic and environmentally friendly route for recreational activities.

The Parkville Smart Road Project in Melbourne, Australia, is an endeavor to create a connected and sustainable transport corridor. It leverages technology and data to enhance the efficiency and environmental performance of the road network. Smart infrastructure elements include LED streetlights, sensors for real-time traffic management, and green spaces integrated into the road design. The project aims to reduce energy consumption and improve overall urban sustainability.

 

Shaping a Sustainable Future:

Green roads are emerging as a transformative force in the realm of transportation infrastructure. Beyond their role in connectivity and accessibility, green roads represent a conscientious effort to harmonize human activities with the natural world. Their serious ecological value is evident in their multifaceted approach—addressing erosion, promoting biodiversity, protecting wildlife, and embracing sustainable practices. As we navigate the path toward a more sustainable future, green roads stand as a testament to the possibility of infrastructure that not only serves human needs but also nurtures and preserves the environment for generations to come.

 

 


 

 

Source Happy Eco News

From Waste To Wealth: How One Pet Product Innovator Is Shaping A Sustainable Future

From Waste To Wealth: How One Pet Product Innovator Is Shaping A Sustainable Future

Founded in 2009 on the humble yet profound idea to make life with dogs simpler and better, Canadian company Earth Rated has evolved from being known just as a company that sells dog waste bags to now offering a diverse range of products that address the needs of dog owners worldwide.

The company now has a presence in over 40 countries, and is focused on product innovation and using business as a force for good. I recently caught up with Earth Rated CEO, Abby Gnanendran, to delve into these topics and how the company, which is also a certified B Corp, is shaping what it means to be sustainable in the pet product industry.

Abby Gnanendran: Back in 2009, we recognized a common issue faced by dog owners – the inconvenience of using large, flimsy, and wasteful grocery store bags to pick up after their dogs. That’s when we set out to create affordable, leak-proof, and high-quality poop bags, along with a handy dispenser. Since then, we’ve continued to innovate and launch new products to make life with dogs simpler and better. Today, Earth Rated bags are used by over 4.5 million people daily and can be found in over 20,000 stores in 40+ countries. We now have a new toy collection, a line of wipes and even more exciting things in the pipeline. We couldn’t be prouder of our humble beginnings and we’re grateful for what we’ve been able to achieve to date.

 

Marquis: It seems a big focus of Earth Rated is on innovation, in a product category that is not known for innovation. Can you say more about your innovation process?

Gnanendran: Our sharp focus on innovation is largely due to our community of loyal customers. Their keen observation of the details that our Innovation Team works tirelessly to bring to life, motivates us to continue creating thoughtfully designed products. For instance, their reaction to the convenient ‘3-bags-left’ sticker on our poop bag rolls, as well as our new toy line, has been nothing short of amazing. Innovation is so important for our company that in 2023, we unveiled our new Innovation Centre. This creative and inspiring space is on an entirely new floor at our Headquarters in Montreal, Canada, and serves as the primary hub for our Innovation Team to bring new products to life. We strive to make sure every detail of our products are carefully thought out, reliable and beautifully designed with our customers in mind. This centre’s open-plan layout, and flexible workspaces, create an environment that fosters innovative thinking. The space is intentionally designed to inspire and facilitate the flow of ideas, enabling the Innovation Team to push the boundaries of what’s possible in dog product development. Whether it’s the thickness of our poop bags, the signature hook on our dispenser, or the durability of our plant-based grooming wipes, we’re always evolving in order to tackle the most pressing consumer pain points from our valuable Earth Rated community so that we can offer the products pet owners wish they had.

 

Marquis: How do you think this approach to innovation and new products will affect the overall dog product industry?

Gnanendran: We began with a humble foundation, primarily centred around providing an essential dog product: poop bags. We’ve since evolved towards an approach steeped in innovation, recognizing that incorporating customer feedback into our daily operations is really our way of helping to propel the industry forward. We believe our company stands out in the pet industry because we actively listen to consumer feedback. By soliciting and valuing input from our community of dog owners worldwide, we ensure that our products not only meet their needs but exceed their expectations.

 

Marquis: How does your B Corp certification play into that impact? Why is B Corp certification important to Earth Rated?

Gnanendran: We’re incredibly proud to be a certified B Corp. For us, transparency is key. At the end of the day, anyone can claim to be sustainable, but having a third-party certification that can actually back it up, makes your brand more trustworthy. We also joined GreenCircle’s #BrandsYouCanTrust initiative by undergoing their Recycled Content Certification. By participating in initiatives that promote ethical business conduct, we’re not only elevating our own standards but also encouraging a collective industry-wide commitment to integrity and responsibility.

 

Marquis: What is the next set of innovations and plans you have in store for consumers?

Gnanendran: Overall, 2023 was such a pivotal year for our company as we revealed a new brand identity, a new innovation centre, a better poop bag, and a new collection of toys. It’s hard to believe we could ever top it, but 2024 is gearing up to be an exciting year! Looking ahead, we plan on continuing to push boundaries, challenge the status quo, and innovate for a brighter, more responsible future, for us and for our dogs. Stay tuned!

 

 

 


 

 

 

Source    Forbes

Some Of The Best Ways To Enjoy Nature

Some Of The Best Ways To Enjoy Nature

Some Of The Best Ways To Enjoy Nature

If you are keen to try and enjoy the natural world as much as possible, that’s something that is always going to be possible to achieve. In fact, there are so many ways to enjoy nature and to make this more a part of your life, so that is something that you should absolutely be aware of here. In this post, we are going to take you through some of the best examples of how you might be able to do just that. You should find that the following is all well worth being aware of and trying out for yourself.

 

Grow A Garden

One thing you may want to try your hand at is growing a garden. If you have the space at home to do this, then that is certainly going to be worthwhile, and it’s something that can help you to feel a lot closer to nature and the natural world in no time. There are many ways to approach this. You might grow fruit and veg, or you might just want to have nice perennials and flowering plants. In either case, growing a garden is a great ecological thing to do, and will help you to enjoy the natural world in your own home.

 

Bring Nature Indoors

You might also want to bring the natural world indoors as well. This is something that can make the home a much nicer place to live, as well as strengthening your bond with nature, so it’s a very simple thing that can make a huge difference to your life for sure. It’s a simple case of having some pot plants around the place, and making sure that you care for them properly and fully. If you can do that, it’s going to mean that you are much more able to really enjoy your home and nature in one.

 

Go For Walks Outdoors

You might also want to think about going for some walks in nature. This is a really powerful way to get attuned to the natural world and to feel as though you are part of it, and it’s something that can help you to enjoy yourself so much more on the whole. You might even consider going barefoot for some of it. However, if you want to do that, make sure that you protect your feet as you do so. All in all, walking in nature is a beautiful experience, and one that you can definitely consider.

 

Visit Gardens

There are also a lot of gardens that are available for the public to go and see, and these can be a great way to enjoy nature in a sense. If you want to do this, just take a look online and see if you can find any in your area that you might want to check out. You might be surprised at how many open gardens there are. This is a really simple and fun way to make sure that you are enjoying nature a lot more.

 

 


 

 

Source   Happy Eco News

Hydrogen Vehicles Are on the Rise: Here’s What You Need to Know

Hydrogen Vehicles Are on the Rise: Here’s What You Need to Know

Hydrogen Vehicles Are on the Rise: Here’s What You Need to Know

The automotive industry is rapidly transitioning to alternative energy sources for fuel vehicles, considering the greenhouse gasses (GHGs) emitted every mile driven. Battery-electric cars are on the rise, but are better alternatives on the horizon?

Hydrogen emerged as a viable replacement for fossil fuels and could be the next big thing in the automotive industry. The rise of hydrogen fuel cells is coming sooner than you may think, so here’s what you need to know about these vehicles.

 

Rapid Market Growth

The future of hydrogen power is bright, as investors think it has massive potential for the automotive industry. Experts say the global hydrogen fuel cell vehicle market will have a compound annual growth rate of 43% until 2032, culminating in a $57.9 billion value. Automakers understand the severity of today’s climate crisis and use any means necessary to advance their sustainability goals.

 

Harnessing Hydrogen

Hydrogen is unstable, as it reacts with other atoms to form compounds. So, how can you harness this chemical element to be safe for your vehicle? Scientists typically use these methods for hydrogen fuel production:

  • Thermal: The Department of Energy (DoE) says about 95% of today’s hydrogen comes from repurposed natural gas. Scientists combine steam and hydrocarbon fuels to produce hydrogen fuel, requiring high temperatures and attention to detail.
  • Solar: Using renewable energy to produce clean fuel is smart, so experts have used solar power for hydrogen production. For instance, they can harness hydrogen fuel using bacteria and its natural photosynthetic activity.
  • Biology: Bacteria are also helpful for hydrogen fuel production through biological reactions. You can use microbes to break down biomass and wastewater, and these tiny organisms aren’t energy-intensive, as they harness sunlight for power.

 

Refueling Stations

Hydrogen fuel is already available if you live on the West Coast, as most of the existing stations are in California — primarily in Los Angeles and the Bay Area. You can also enjoy this alternative energy source in the Pacific Ocean at the Hawaii Natural Energy Institute. As hydrogen fuel grows in demand, you’ll see more opportunities to fill up with it.

The DoE says the United States has 59 retail hydrogen-fueling stations, but more projects are on the way. Fleet companies may have private areas for fueling their vehicles, especially as long-haul trucks convert to hydrogen fuel.

 

Can Semi-Trucks Use Hydrogen Fuel?

Battery-electric motors are a concern for larger vehicles like light-duty and long-haul trucks. These machines must be powerful enough to propel heavy machines for long distances, but their weight drains energy quickly. Will hydrogen fuel be a solution? The logistics industry has focused on this alternative fuel source for greener highways.

For instance, in 2025, Kenworth will begin full-scale production of Class 8 T680 hydrogen fuel cell electric trucks in collaboration with Toyota. The heavy-duty truck manufacturer will deliver its first hydrogen-powered vehicles this year and then expand production.

While the fuel source changes, the typical qualities in hydrogen-powered trucks do not. This Kenworth Class 8 T680 truck has a max payload of 82,000 pounds, demonstrating its ability to carry a significant amount of goods.

The truck uses Toyota’s 310kW Dual Motor Assembly, as the Japanese automaker has prioritized hydrogen fuel research in the last decade. It recently released the second-generation Mirai, which mixes hydrogen and oxygen to produce electricity.

States like California have imposed strict requirements for long-haul trucks and other vehicles, so hydrogen-powered trucks could be the answer for sustainability and dependable transportation. Kenworth tested hydrogen fuel cell technology at the Port of Los Angeles in 2022 and used its success to build the Class 8 T680 semi-truck. Continued success will likely mean further North American expansion.

 

Powering Outside the Highways

Hydrogen has become a viable option for passenger cars and even long-haul trucks in its early stages. However, highway vehicles are not the only method of transportation using hydrogen power. Last year, North America debuted its first hydrogen train in Quebec, Canada. This machine uses about 50 kg of hydrogen daily and eliminates dependence upon fossil fuels for these trips.

Hydro-Quebec provides energy for the train, enabling it to travel about 90 km between Quebec City and Baie-Saint-Paul. Emissions are less of a worry for the train, as you only see water vapor emerging from its pipes.

 

What Are the Benefits of Hydrogen-Powered Vehicles?

Hydrogen-powered vehicles are likely the future, as automakers heavily invest in the technologies required for these machines. Driving a hydrogen-powered car delivers these four benefits.

1. Reducing Emissions

Auto manufacturers like Toyota are pushing hydrogen fuel technology because of its eco-friendliness. The only emissions are water vapor and heat, thus making them better for the environment. Turning hydrogen fuel cells mainstream would reduce the amount of GHGs emitted daily, which is crucial to combating climate change.

The transition to hydrogen fuel cells would significantly boost the logistics industry, considering how many long-haul trucks hit the road daily. Research shows medium and heavy-duty vehicles in the U.S. emit over 400 million metric tons of GHGs. Converting trucks worldwide would help the surrounding environment and improve health for each road traveled.

2. Easy Transition

While converting existing trucks to hydrogen fuel cells takes time, the transition might be easier than you think. Logistics companies can keep their current gas transport and storage mechanisms, repurposing them for hydrogen fuel.

Additionally, truck owners wouldn’t have to jump through hoops to let their vehicles take hydrogen power. Retrofitting combustion engines for hydrogen power is more straightforward than with electric motors, especially with heavy trucks.

3. Beating Battery-Powered Vehicles

Battery-electric trucks are best for short drives due to their limited range. However, logistics companies need their vehicles to travel hundreds of miles each trip to keep deliveries on time. Hydrogen-powered trucks allow fleet owners to combine sustainability and efficient travel due to their range.

For instance, the Kenworth T680 hydrogen fuel-powered truck ranges up to 450 miles, depending on the driving conditions. Regardless, it’s more than you’d get from an electric truck. In fact, the Kenworth machine boasts one of the highest ranges for any semi-truck using alternative energy sources.

4. Rapid Refueling

Another significant advantage of hydrogen trucks over battery-electric vehicles is the quick refueling. Fully electric trucks will need to wait for a few hours before they can head back on the road, causing trips to be longer than scheduled. However, hydrogen machines only require a few minutes to fill up, greatly boosting logistics companies. The Kenworth hydrogen fuel cell vehicle lets fleet owners increase uptime and reduce lead times.

Foreshadowing a Bright Future

The automotive industry is pushing for fossil fuel alternatives to help the planet’s transportation sector. While battery-electric technology has existed for over a decade, hydrogen fuel cells are another way for automakers to produce cleaner vehicles.

The future of hydrogen vehicles is bright as researchers continue to improve the technology and bring it into the mainstream.

 

 

 


 

 

 

Source  Happy Eco News

4 Stepping Stones to Sustainability for New Construction Firms

4 Stepping Stones to Sustainability for New Construction Firms

4 Stepping Stones to Sustainability for New Construction Firms

The construction industry has a well-deserved reputation for being an environmental polluter. It has gotten away with ungreen practices because the other sectors are just as dirty, if not more. However, climate change has made the world less tolerant of environmentally unsound organizations. Governments have joined the sustainability movement, so the writing is on the wall for maladaptive enterprises.

Many firms are slow to adopt greener practices, but the influx of startups can accelerate the sector’s sustainability transformation. New design-build firms, general contracting businesses, and subcontractors are better positioned to embrace eco-friendly initiatives.

The corporate culture is still a blank canvas, so start fresh with these four tips.

 

  1. Go Digital

Technological adoption and sustainability go hand in hand. Outdated methods and crude tools limit your ability to overcome your blind spots and find opportunities to operate more sustainably. Investing in digital technologies is necessary to address your pain points and streamline your processes.

Which innovations should you prioritize? There are numerous excellent candidates:

  • Mobile devices and messaging tools can harness cloud computing’s potential to promote remote resource access and foster interconnectedness. The interplay between these technologies will break down the usual communication barriers, making it easy to keep everybody on the same page.
  • Computer-aided design, building information modeling, and construction management programs streamline processes. They have unique functions but digitize data so you can review information more granularly. Analytics programs can reveal insights to solve problems that harm the environment, like surplus inventory and rework.
  • LiDAR and camera-equipped drones, wearable Internet of Things devices, and telematics systems can collect data on almost anything. They can help you precisely and accurately scan the landscape to minimize disturbance on existing ecosystems, quantify worker performance to identify and correct wasteful habits and keep tabs on equipment usage.
  • Bots automate tedious tasks, allowing you to conduct construction work more efficiently. Robotic arm 3D printers and bricklayers can help you complete projects faster and decrease material waste.

Construction has been slow to innovate primarily due to employee hesitance. Feeling intimidated by innovative solutions and receiving inadequate technical support are some of the usual baggage crews carry. Budget for training and continuous learning, as technologically savvy workers feel comfortable with innovations and can maximize their tools to run your business more sustainably.

 

  1. Be Circular

Circularity promotes using renewable, reclaimed or recycled materials, reusing or repurposing items, recovering salvageable materials, and designing structures with easily recoverable components. Such practices aim to leave the remaining virgin resources untouched because logging, mining and quarrying have considerable environmental consequences. These extraction methods destroy natural habitats, displace wildlife, eradicate biodiversity, pollute soil, water and air, and reduce natural carbon sinks.

Considering the planet’s finite resources, the construction industry has to switch from the linear to the circular model sooner rather than later. Otherwise, the sector will face crippling supply chain disruptions, which can result in project delays and loss of profits. How do you join the circular economy?

  • Buy reclaimed, recycled and repurposed construction supplies: Try doing so whenever you can to help conserve virgin resources.
  • Choose vendors carefully: Circular suppliers engaging in unethical practices practice greenwashing, not sustainability. Exercise due diligence to ensure your supply chain partners are as green as they claim to be to avoid enriching environmentally damaging businesses.
  • Select used equipment over new products: Purchasing pre-owned tools, machines and vehicles is sustainable because they’re already around. Ordering brand-new assets incentivizes manufacturers to build more products, potentially using newly extracted raw materials. Plus, pre-owned models save you money because used items cost less, less downtime is necessary for training and replacement parts are usually cheaper.
  • Put a premium on prefabrication: Prefab construction minimizes waste since it’s easier to control material usage when building components off-site in a factory-controlled environment. More importantly, construction modules lend themselves to deconstruction, simplifying dismantling and material recovery for reuse or resale.

 

  1. Emit Less

Decarbonize your operations at every turn. Switching from diesel to electric is one of the best ways to do so. Powering your assets with nothing but electricity eliminates air and noise pollution on-site.

Running on electricity doesn’t automatically translate to fewer greenhouse gas emissions. In 2023, fossil fuels produced 60% of the electricity generated in the United States. The nation’s power mix will be cleaner once green hydrogen becomes ubiquitous, so operating electric construction assets will be even more eco-friendly in the future.

If upgrading to electric equipment doesn’t make sense for you, adopting renewable diesel is the next best thing. This alternative fuel is chemically identical to fossil-derived diesel, so you can use it on your existing assets without modifying anything. Renewable diesel releases fewer climate change gasses because it burns cleaner.

Furthermore, localize your supply chain. Ships are responsible for 3% of all greenhouse gasses linked to human activities globally. Ordering materials from overseas will increase your construction firm’s carbon footprint, but transporting domestically sourced materials involves fewer emissions. It’s also logically simple because they cover less ground and avoid Customs and Border Protection. As a bonus, you enjoy shorter lead times.

Make it a mission to have a lean mindset. A lean construction philosophy aims to cut waste at every chance, minimizing idle time and redundant processes that drive up greenhouse gas emissions.

 

  1. Look Ahead

Sustainability isn’t an objective — it’s a purpose. It’s a never-ending pursuit, so always seek new ways to run your construction firm in an environmentally friendly way.

Lack of knowledge about emerging technologies is among the limiting factors in innovating. Curiosity is the antidote to ignorance, so keep up with the hottest trends in eco-building. Transparent wood, superabsorbent hydrogel, luminescent cement, 3D-printed soil structures, biodegradable polyurethane foam and plasma rock are some of the most promising innovations.

Most promising eco-friendly construction solutions take a lot of development before becoming ready for sale — and only a few ultimately gain mainstream acceptance. Although many ingenious ideas don’t pan out, be ahead of the curve. Use them to inspire regenerative and climate-resilient building designs that positively impact the environment for decades.

 

Take Small Steps Toward Sustainability

These four strategies only scratch the surface of what you do to be a force for good in the sector’s sustainability transformation. Strive to be more eco-friendly as you grow and you’ll establish a solid reputation as a green construction business.

 

 


 

 

Source   Happy Eco News 

Recycling Cigarette Butts into Asphalt

Recycling Cigarette Butts into Asphalt

Cigarette butts are the most littered item worldwide. Over 4.5 trillion cigarette butts pollute our environment every year. They do not easily biodegrade and are full of chemicals that are toxic to the wildlife that may ingest them. They are small individually, but they add up to a big problem. A waste management company in Bratislava, Slovakia, has found a new way of recycling cigarette butts, and that is by transforming cigarette butts into asphalt.

The environmental effect of cigarettes

More than 6 trillion cigarettes are smoked yearly around the world. You are probably familiar with how cigarettes cause air pollution due to the burning of tobacco, which releases harmful chemicals into the air. But did you know the butts from cigarettes are the most common form of personal litter in the world?

In the world total, cigarette butts make up more than one-third of litter. While cigarette butts may look like cotton, they are made of plastic fibers which are tightly packed together. And because they are made from man-made materials, they won’t organically break down into the environment.

Moreover, because cigarette butts are made of toxic chemicals when they are disposed of improperly, these chemicals (such as nicotine, lead, cadmium, and arsenic) will leach into the environment. The toxic chemicals can find their way into rivers, lakes, and oceans, harming aquatic life and contaminating water sources. There is also a risk of wildlife mistaking cigarette butts for food, accidentally injesting them.

Transforming cigarette butts into asphalt

A municipal waste management company in Bratislava, Slovakia, is pioneering a new way of recycling cigarette butts. At the end of 2023, the company trialed special containers designed to collect standard cigarette filters and those found in modern heated tobacco devices like vapes. And placed them around the city.

In collaboration with companies SPAK-EKO and EcoButt, the Bratislava City Council will be recycling cigarette butts to use the discarded materials to create asphalt for roads. Once the filters have been collected from the specialized bins, they will undergo a cleaning process to remove toxins and any residual tobacco. The cleaned filters are composed of cellulose acetate from the filters, which are then transformed into fine fibers. The fibers are mixed with traditional asphalt materials, which help with the asphalt’s durability and longevity.

The final product can be used just like conventional asphalt for creating new roads or repairing existing ones.

This isn’t the first time Slovakia is recycling cigarette butts into asphalt to be used on their roads. Their first cigarette filter road is located in  Ziar and Hronom and was the first in the world.

With this program, cities in Slovakia can encourage people not only to stop throwing their cigarette butts on the ground, where they will do harm to the environment. But this project can also show people how they can participate in sustainable urban development.

Recycling cigarette butts into asphalt can also help reduce the environmental impact of the construction industry. The production of asphalt involves heating and mixing aggregates with bitumen, a petroleum-based binder. This process releases greenhouse gases and other air pollutants, contributing to air quality issues and climate change.

Rainwater runoff from asphalt surfaces can carry pollutants, such as oil, heavy metals, and chemicals from vehicle exhaust, into waterways, potentially contaminating aquatic ecosystems. Recycling cigarette butts in the asphalt may help absorb and reduce many of these environmental harms and could change how we construct our roads.

Cigarettes might not be disappearing in the very near future, but we can find ways to make them less damaging to our planet and help cities be a little cleaner. Providing users with these specialized cigarette butt bins is one way to keep cigarette butts off the ground and out of our waters. And repurposing these butts is one way we can support a circular model and reuse and repurpose our resources.

Slovakia has a very innovative plan, and we hope it catches on around the world.

 

 


 

 

Source   Happy Eco News

How the World’s Whitest Paint Can Reduce Energy Use

How the World’s Whitest Paint Can Reduce Energy Use

Scientists have long understood the climate and energy efficiency benefits of reflective white paints. Now, engineers at Purdue University have created the world’s whitest paint that reflects more than 98% of sunlight, leaving all other paints appearing grey by comparison. As demand for sustainable solutions grows globally, this innovation promises greener buildings and cities by passively lowering carbon emissions and energy use.

The world’s whitest paint formulation was reportedly completed in early 2021. While initially produced for research applications at Purdue, press releases indicate Perdue intends to optimize and commercialize the product for widespread availability as early as late 2023. This rapid early adoption timeline speaks to the hunger for market-viable incremental gains in cooling efficiency as global temperatures continue rising.

With the formulas and methods published openly, it remains to be seen whether alternate whitest paint variants may emerge from other research teams or commercial producers, sparking a global race toward passive cooling innovation. Even moderate cooling boosts from white paint could incentivize entities like major cities to begin budgeting for wide-scale reflective surface projects within the decade.

Applying the world’s whitest paint to building rooftops and envelopes can reduce their surface temperatures by over 20°C compared to conventional options. By reflecting rather than absorbing heat, the broad deployment of the world’s whitest paint could mitigate the phenomenon of urban heat islands, where dense cityscapes absorb and radiate increased warmth. Modeling suggests summer city temperatures could decrease by over 2°C using this approach.

The development of a highly reflective and renewable calcium carbonate-based paint offers an innovative solution to excessive urban heating. As climate change brings more frequent and intense heat waves, the cooling potential of reflective white surfaces will grow increasingly impactful. Deploying this paint across a city’s building stock can lower indoor and outdoor temperatures while cutting air conditioning demands as well. Transitioning rooftops from heat-trapping dark colors to the whitest paint formula could become a climate resilience strategy for communities worldwide.

Looking beyond buildings, custom reflective paints and paving materials show similar potential for cooling everything from vehicles to sidewalks to transit shelters. An urban landscape covered with maximum heat reflection could compound cooling benefits compared to white rooftops alone. More research into expanding high-albedo surfaces across the built environment will further quantify the associated quality of life and emissions reductions. Simple shifts in surfaces and materials at scale could make future cities markedly more livable.

The world’s whitest paint keeps surfaces cool to the touch, even in the hottest environments. Compared to the air temperature at mid-afternoon, a surface painted with the world’s whitest paint can be several degrees cooler than regular white paint. At night, the difference is even more pronounced, up to 19 degrees.

The corresponding drop in air conditioning electricity demand is equally significant from an emissions reduction perspective. Studies by the US Environmental Protection Agency show cool roofs can reduce a building’s annual air conditioning requirements by 10-30%. The increased grid energy efficiency will provide critical flexibility for integrating renewable energy sources as part of essential decarbonization efforts across the power sector.

While the world’s whitest paint’s exceptional solar performance will justify further optimization before mass production, its imminent commercial arrival heralds a shift in leveraging incremental materials innovation. The compound benefits of collective small-scale action represent meaningful progress, offering pragmatic climate hope. If cool paint alone makes summers more bearable, our combined creative efforts focused first on the possibly more than the ideal may yet brighten prospects for sustainable living.

With vision and patience, Perdue’s ultra-white paint is but a glimpse of a future where green cities are dotted with communities that thrive in the hotter world they’ve warded off, one roof at a time.

 

 


 

 

Source  Happy Eco News

Solar Farms Help Bees: Solar Installations for the Bees

Solar Farms Help Bees: Solar Installations for the Bees

Solar farms help bees: Solar farms emerging as sanctuaries for declining wild and honey bee populations.

In an unexpected turn, solar farms help bees and are emerging as potential sanctuaries for declining bee populations, providing a secondary purpose beyond clean energy generation. A recent study reveals that strategically planting native flowers and grasses around solar installations significantly enhances the population and diversity of crucial pollinators like bees, offering a promising avenue for both clean energy expansion and environmental conservation.

Research conducted by scientists from the Department of Energy’s Argonne National Lab, in collaboration with the National Renewable Energy Lab, focused on assessing the impacts on insects from two large solar installations situated on retired farmland in Minnesota. Enel Green Power North America, the operators of these solar sites, undertook the initiative to plant wildflower mixes alongside the panel arrays during construction in 2018. The researchers then conducted comprehensive year-round insect surveys at these facilities from 2018 to 2022.

The findings from the study are nothing short of remarkable; solar farms help bees. Over the five-year observation period, both native bee and monarch butterfly populations increased more than twenty-fold. The areas surrounding the solar panels transformed into thriving, prairie-like habitats abundant with essential flowering nourishment. The overall insect populations tripled, surpassing initial expectations. Additionally, these flourishing hubs of pollinators are extending benefits to vegetation in nearby agricultural areas, as evidenced by satellite imaging.

Dr. Lee Walston, an ecologist at Argonne and the lead author of the study, expressed enthusiasm about the scale of positive influence managed solar landscapes can have on insect biodiversity and abundance. The strategic integration of natural ecosystem elements adjacent to renewable projects, as demonstrated in this study, could potentially offer a win-win scenario, supporting the expansion of clean energy infrastructure while addressing the decline in insect populations.

The research underscores the concept of “solar sharing” – a departure from the traditional approach of isolating solar infrastructure from its surroundings. By allowing vegetation to thrive around solar facilities, solar farms help bees, and a new haven is created to support fragile bee colonies. The collapse of global bee populations poses a severe threat to agriculture, as over $500 billion in crop production relies on natural pollination annually.

But it doesn’t have to be only about the bees. Agrovoltaics refers to co-locating agriculture and solar photovoltaic systems on the same land. The solar panels are elevated and spaced out to allow crops to be grown underneath while allowing sunlight to reach the crops. The partial shade created by the solar panels can benefit certain crops by providing shelter, reducing evapotranspiration, and lessening weed pressure. The crops benefit the solar infrastructure by reducing heat under and around the panels.

Some bee-friendly crops and flowers that could thrive under the partial shade of solar panels include potatoes, cabbage, kale, carrots, Brussels sprouts, celery, spinach, onions, garlic, lettuce, arugula, strawberries, asparagus, leeks, swiss chard, parsley, oregano, green beans, sunflowers, cosmos flowers, marigolds, clovers, borage, and many varieties of wildflowers. These provide nutrient-rich pollen and nectar that support diverse bee populations.

These findings open the door to a new perspective on the relationship between solar power and ecological conservation. Instead of erecting barriers, solar infrastructure can be designed to coexist harmoniously with the environment. The success observed in this study suggests that solar farms help bees and can play a crucial role in aiding declining bee populations, offering hope for preserving essential pollinators.

As the world grapples with the urgent need for sustainable practices amid the climate crisis, the authors hope these groundbreaking findings will inspire further research. Exploring habitat-friendly solar blueprints to integrate nature into the urgent climate transition could be a transformative step forward. Dr. Walston emphasized the potential symbiosis between solar power and ecological conservation, envisioning bees flocking to blossoms beneath solar panels, which may reveal surprising pathways to advance sustainable energy and agriculture concurrently.

In conclusion, solar farms help bees. Once seen solely as agents of clean energy, they are now emerging as potential allies in the crucial mission to preserve and protect bee populations. This unexpected synergy between renewable energy infrastructure and environmental conservation opens doors to innovative solutions that could redefine the future of sustainable energy and agriculture.

 

 


 

 

Source   Happy Eco News

Underground Hydrogen Touted As ‘Significant’ Clean Energy Resource In First U.S. Hearing

Underground Hydrogen Touted As ‘Significant’ Clean Energy Resource In First U.S. Hearing

The Senate held the first congressional hearing on geologic hydrogen, a promising new form of clean energy generated naturally underground, that’s attracted growing interest and investment over the past year.

The Committee on Energy and Natural Resources, chaired by West Virginia’s Sen. Joe Manchin, heard testimony on Wednesday from the Energy Department’s advanced research unit, the U.S. Geological Survey and Pete Johnson, CEO of Koloma, the best-funded startup in the geologic hydrogen space. They concurred that more research is needed to identify the most abundant, promising sites and to develop techniques to amplify the natural production process, but were upbeat about the outlook.

“The potential for geologic hydrogen represents a paradigm shift in the way we think about hydrogen as an energy source,” Evelyn Wang, director of DOE’s Advanced Research Projects Agency-Energy told Senators. “This new source of hydrogen could lower energy costs and increase our nation’s energy security and supply chains.”

Federal scientists have begun working with universities and energy companies to find ways to map and locate potentially large pockets of hydrogen as current estimates are inadequate, said the Geological Survey’s Geoffrey Ellis. “The estimated in-place global geologic hydrogen resource ranges from 1000s to potentially billions of megatons,” he told the committee. “Given our understanding of other geologic resources, the vast majority of the in-place hydrogen is likely to be in accumulations that are either too far offshore or too small to ever be economically recovered. However, if even a small fraction of this amount could be recovered that would constitute a significant resource.”

Hydrogen is already heavily used in industry, including at oil refineries, chemical plants and as a key ingredient in ammonia for fertilizer. But nearly all of it is made by extracting hydrogen from natural gas, a dirty process that emits large amounts of carbon dioxide. Like green hydrogen — a new clean form of the element made from water and electricity, ideally from renewable power — the geologic variety is carbon-free. Scientists believe it’s generated in underground pockets of iron-rich rock in warm, moist conditions that are extremely common. Uniquely, it’s an energy source that’s just sitting there, not one that needs to be created.

“All other forms of hydrogen require more energy to produce than the hydrogen itself holds,” Koloma’s Johnson said. “This is incredibly clean energy. In multiple third-party lifecycle analyses and peer-reviewed journal articles, geologic hydrogen has been found to have a very low carbon footprint. In addition, geologic hydrogen will result in lower land use and lower water consumption than any other form of hydrogen.”

Johnson, Wang and Ellis also noted that drilling or mining for hydrogen leverages techniques used by the oil and gas industry. It’s also likely to aid domestic ammonia production.

“Hydrogen is a great feedstock and it’s used to create ammonia for fertilizer,” said Wang. “If we could really stimulate and extract this hydrogen and produce very large quantities at very low cost I think this could have significant implications to help and support farmers.”

Johnson provided no details about when Denver-based Koloma, which has raised over $300 million from investors including Bill Gates’s Breakthrough Energy Ventures, Energy Impact Partners and Amazon, would begin commercial extraction of hydrogen but is cautiously optimistic.

“This will take time, money and effort to figure out. Nobody has all the answers today,” he told the committee. “The early data looks promising and I believe that geologic hydrogen can play a very large role as we decarbonize the U.S. energy economy.”

 

 


 

 

Source    Forbes