Search for any green Service

Find green products from around the world in one place

New Carbon Capture Tech Turns CO2 into Solid Carbon

New Carbon Capture Tech Turns CO2 into Solid Carbon

New capture technology turns CO2 into solid carbon, a coal-like product that can be safely reburied.

Scientists may have discovered a groundbreaking new method to pull out of the air and convert CO2 into solid carbon flakes. Researchers at Australia’s Royal Melbourne Institute of Technology (RMIT) have pioneered an efficient carbon mineralization process using liquid metal catalysts. This technology could provide a sustainable way to capture atmospheric CO2 and safely store it long-term as a stable solid.

Most carbon capture techniques today focus on compressing CO2 gas into a liquid that is injected deep underground. However potential leakage risks make this method less than ideal for permanently storing billions of tons of carbon dioxide. We urgently need innovative solutions to remove and safely store the CO2 already overburdening our atmosphere.

That’s why RMIT’s new mineralization approach to turn CO2 into solid carbon is so promising. It converts greenhouse gases into inert carbon solids at room temperature. This offers a potentially cheaper, more secure form of carbon storage compared to current methods.

RMIT’s method utilizes molten liquid metals to trigger a chemical reaction, transforming gaseous CO2 into solid carbon flakes. This occurs at ambient temperature inside a simple glass tube device. The process works by sending CO2 into the glass tube containing a liquid metal alloy of gallium, indium, tin, and cerium. Running an electric current through the metal accelerates the carbon mineralization reaction.

Carbon steadily accumulates as a layer of solid flakes on the liquid metal surface and the only byproduct of the process is pure oxygen. The flakes are then removed allowing the process to continue indefinitely. Because this process occurs are room temperature, the energy requirements are far lower than other systems.

The researchers experimented with different metal compositions and temperature conditions to optimize the carbon conversion process. Once optimized, the system can continuously pull in and convert atmospheric CO2 into solid carbon without additional heat or pressure.

Unlike underground injection techniques, solid carbon can easily be collected for safe, permanent storage. The carbon solids could even be processed into materials like carbon fiber. And since the process only needs a small amount of electricity and air, it has minimal environmental impact or manufacturing costs.

Turning CO2 into solid carbon could be a more predictable, sustainable and longer lasting approach to carbon capture and storage. The RMIT team is already investigating ways to scale up the liquid metal carbon mineralization method. Adoption by power plants or heavy industry could significantly cut CO2 outputs.

Finding viable ways to remove excess greenhouse gases is critical to slow global warming. Since the Industrial Revolution, over 1.3 trillion tons of carbon dioxide have entered the atmosphere – and the pace is accelerating. New solutions like RMIT’s carbon mineralization technology will be essential to extracting legacy emissions already dangerously heating our planet.

 


 

 

Source   Happy Eco News

Converting captured carbon into rock really is that easy

Converting captured carbon into rock really is that easy

Capturing carbon from the atmosphere is quickly becoming a popular venture. The sector skyrocketed in 2022 as the top emerging segment of climate tech funding, and the Inflation Reduction Act passed earlier this year increased the financial compensation for every ton of carbon captured in the U.S. But Icelandic company Carbfix has been capturing and storing carbon in rocks for over a decade.

Edda Sif Pind Aradóttir, Carbfix’s CEO, has been with Carbfix since its inception in 2007. Beginning as a PhD student working on the R&D of the relationship between CO2, hydrology and geology beneath the earth, Aradóttir worked her way up after earning her doctorate, first to project manager, and then eventually to CEO of the innovative company paving the way for a new frontier of carbon capturing.

Carbfix specifically dissolves CO2 into sparkling water and injects the mixture into a carefully chosen subsurface, or the layer beneath the earth’s surface. Once among the subterranean rock (most commonly basalt) a naturally occurring phenomenon takes over and solidifies the combination into solid carbonate minerals. While other types of rock can also host this process, basalt is one of the most common rock types on Earth, according to Aradóttir, making the adoption of the technology more feasible across the globe.

Currently, Aradóttir told GreenBiz, “point sourcing, or capture and storage at the same location, is always going to be the most cost effective. But when that’s not possible, [Carbfix] can add the transport link, whether that means pipes, trains, trucks or ships.”

But once it arrives at Carbfix’s facilities, it requires storage until it can be sequestered into the rock. Aradóttir explains that temporary CO2 storage infrastructure is the next project the company is undertaking.

The European Union recently pledged significant financial support to Carbfix to “build the first of a kind of such [a storage facility] in Iceland.” Carbfix expects to break ground in the upcoming months.

 

Image courtesy of Green by Iceland, photographer Gunnar Freyr Gunnarsson

 

Speaking to GreenBiz at the recent US-Iceland Energy Summit hosted in Washington, D.C., Aradóttir shared an upcoming local project. According to the CEO, the U.S. Department of Energy is funding Carbfix’s research in Minnesota, with the ultimate purpose of the R&D to determine whether local rock formations could one day host injected CO2.

In addition to the Minnesota project, Carbfix is simultaneously scoping the U.S. geology for other sites amenable for future CO2 injection and storage. While all U.S.-based projects are in the infancy of the R&D phase, Aradóttir confirmed that substantial local job creation is to be expected. For example, she estimates 600 new jobs at the upcoming storage facility about to break ground in Iceland. For the U.S., a country whose transition to 100 percent renewable energy depends upon steady job creation to compensate for the fossil fuel-based jobs lost, this is only good news.

Aradóttir passionately advocated for an expedited adoption of climate change mitigating measures.

“We have the technologies and we know what to do, but we’re still not really doing it at the pace needed,” she said. “I don’t think this gets the attention it should get.” Aradóttir acknowledged that “doom and gloom” is not an effective communication strategy to spur action. Optimism is needed to encourage hope and drive motivation. But still she knows it’s hard when, “year after year after year, we don’t deliver, but it’s something we absolutely can do.”

Carbfix is taking that mantra to heart. Currently, the company has injected 83,957 metric tons of CO2, or the equivalent of 208 million miles driven by an average combustion vehicle, into the earth since 2014, and it’s taking that technology on an international tour. Currently, Carbfix has 14 ongoing projects within Iceland and around the world, including Germany, Turkey and Italy. And its website features an atlas of all of the potential geological sites where subsurface CO2 injection and storage should be compatible. Time will tell if Carbfix can get buy-in to take advantage of these sites.

 


 

Source GreenBiz