Search for any green Service

Find green products from around the world in one place

Premier League Clubs Agree To Minimum Standard Of Environmental Action

Premier League Clubs Agree To Minimum Standard Of Environmental Action

‘Underpin long-term environmental ambitions’

The Commitment outlines four operational measures, which will build on existing actions and provide a foundation to underpin long-term environmental ambitions. They are:

1. Develop a robust environmental sustainability policy, by the end of the 2024/25 season

2. Designate a senior employee to lead the club’s environmental sustainability activities

3. Develop a greenhouse gas (GHG) emissions dataset (scope 1, 2 and 3) by the end of the 2025/26 season and work towards a standardised football-wide approach to measuring emissions

4. Support the development of a common framework for action via the Premier League Sustainability Working Group (PLSWG)

The statement confirms that ‘the measures have been developed following extensive consultation with clubs and the Premier League Sustainability Working Group, which was established last year to help shape and inform environmental practices across the League.’

 

What impact will this have?

According to Sport Positive Leagues dataset (the latest update of which is in progress, out in March), the majority of Premier League clubs have an environmental policy or strategy in place. They range from a statement on the club’s website, to a large-scale breakdown of their activities, environmental footprint, reporting and ambition. Having a date in place for all clubs to have something robust in place is a strong step forward.

Designating a senior employee to lead the environmental sustainability activities is crucial, to ensure this stays on the agenda and is pushed forward. In Premier League clubs currently this ranges from head of sustainability and sustainability manager roles, to communications, facilities and operations.

Six Premier League clubs currently publicly share some or all of their carbon footprint – Manchester City, Liverpool, Tottenham Hotspur, Wolverhampton Wanderers, Nottingham Forest and Crystal Palace. Some clubs know their emissions footprint but don’t currently publicly report on scope 1, 2 and 3, beyond SECR regulations. Other clubs are earlier on in the journey of capturing data, but the majority are on the way to understanding their baseline. Having a standardised football-wide approach will enable a level playing field.

The development of a common framework for action via PLSWG is an important commitment, as the power of collective and unified action in football is key to ambition, action and success at scale.

 

 


 

 

Source   Forbes

 

Meta Powers Towards Net Zero with Carbon Removal Projects

Meta Powers Towards Net Zero with Carbon Removal Projects

Any organisation worth their sustainability salt knows that reaching net zero emissions in operations alone is not enough

Decarbonization must extend beyond offices and factories to include Scope 3, from the emissions caused by suppliers to those created by employees.

For Meta, the world’s fifth-biggest tech company, this challenge is being met with ambitious targets and bold, meaningful action.

Having already hit net zero emissions in global operations in 2020, the social media giant now has its sustainability sights set on achieving net zero value chain emissions by 2030.

This is quite the challenge, given 99% of Meta’s carbon footprint came from Scope 3 in 2022 – and this continues to rise.

“We know that reaching net zero emissions across our value chain will not be an easy task,” Rachel Peterson, Vice President of Data Centre Strategy at Meta said in the company’s 2023 Sustainability Report.

“Right now, our Scope 3 emissions are increasing and will continue to do so as we work to support the global demand for the services we provide.”

 

Meta Tackles Hard-to-Abate Sectors with Carbon Removal Projects

Meta acknowledges that reaching this goal requires a significant shift in how it builds infrastructure and operates its entire business – and the 20-year-old company is prioritising efficiency and circularity in its business decisions and embracing low-carbon technology to operate with a lower emissions footprint.

For example, through its supplier engagement programme, Meta is working to decarbonise its supply chain and enable at least two-thirds of its suppliers to set SBTi-aligned reduction targets by 206.

However, there are some emissions from hard-to-abate sectors the Facebook owner knows will be difficult to reduce by the end of the decade.

And so to tackle this, Meta has turned to carbon removal projects, the third pillar in its high-level emissions reduction strategy.

In a white paper outlining its Net Zero Strategy, the company says investing in value chain emissions reductions projects is necessary to address sources it can’t directly influence – like companies or processes used to extract and process the copper in data centre hardware or mechanical electrical equipment.

“These projects offer a significant opportunity to decarbonise our business at pace and scale require to achieve our 2030 reduction target,” the paper states.

For Meta, a diverse approach to carbon removal that includes both nature-based and technological approaches is crucial – not only to ensure near-term climate impact but to support carbon removal solutions for the future.

This strategy involves the purchase of credits from projects that align with Meta’s principles, from reforestation to investment in direct air capture technology.

 

Nature-Based Solutions in Mitigating Carbon Emissions

Since 2021, the social media giant has supported numerous nature-based carbon removal projects, from Australia to Kenya, including increasing forest carbon stock of community ejido forests in Oaxaca and increasing stored carbon via protection of forests that provide habitat for mitigating salmon in California.

And demonstrating its continued commitment to investing in nature-based solutions to mitigate carbon emissions, Meta recently signed a major carbon credits deal for 6.75 million carbon credits with Aspiration, a leading provider of sustainable financial services.

These credits hail from a myriad of ecosystem restoration and natural carbon removal approaches, including native tree and mangrove reforestation, agroforestry, and the implementation of sustainable agricultural practices.

Meta’s role in the voluntary carbon market extends beyond purchasing credits from projects to supporting new project development through financing and encouraging the evolution of standards that bring more certainty to the market.

Among the ways Meta is driving development in the sector is through collaborative action that will “aggregate the resources of multiple companies to create rapid change at scale”.

This includes a collaborative pledge to develop carbon projects that centre Indigenous leadership.

Through 1t.org, the National Indian Carbon Coalition and Meta have pledged to support and promote a model of carbon projects that centre on the leadership, traditional ecological knowledge, and vision of Indigenous Peoples for themselves and their land.

Among other collaborative projects:

  • Participation in the Business Alliance to Scale Climate Solutions (BASCS), which provides a platform for businesses and climate experts to meet, learn, discuss and act together to improve climate solutions.
  • Collaboration with the World Resources Institute to develop a method to map forest canopy height↗ at individual tree-scale using a new Meta AI training model. We have mapped forest canopy in California and São Paulo, Brazil, and are making the data public and freely available

 

 

Meta’s Role in Scaling Carbon Removal Technologies

In further driving development in the sector, Meta joined forces with other big tech companies in 2022 to accelerate the development of carbon removal technologies by guaranteeing future demand.

While some say focusing on carbon capture is a distraction to the real goal of reducing greenhouse gas emissions, Meta argues that both emissions reductions and carbon dioxide removal are needed.

And climate science backs this up.

Scientists say removing the carbon emissions that we have already pumped into the atmosphere is necessary if we are to avoid the 1.5-degree rises in global temperature set out in the Paris Agreement.

Launched in 2022, Frontier is a US$925 million joint commitment between Meta, Stripe, Shopify, McKinsey Sustainability and Alphabet – more recently bolstered with four new companies – Autodesk, H&M Group, JPMorgan Chase and Workday – committing a combined US$100 million.

Frontier helps its member companies purchase CO2 removal via pre-purchase agreements or offtake agreements. The goal is to spur the development of a new industry by providing a novel source of funding that isn’t based on debt or equity investments, but on actual product purchases before the technology is fully available at scale.

So far, Frontier has spent $5.6 million buying nearly 9,000 tonnes of contracted carbon removal from 15 different carbon dioxide removal startups.

Among these, RepAir uses electrochemical cells and clean electricity to capture carbon dioxide from the air, while Living Carbon is a synthetic biology startup working on engineering natural systems to remove carbon dioxide.

With this strategy, Meta is helping to expand the voluntary carbon market, overcome barriers to scale, and at the same time achieve its own ambitious net zero goals.

 

 


 

 

Source

Mars on a Procurement Pathway to Net-Zero

Mars on a Procurement Pathway to Net-Zero

Mars has published its open-source action plan to accelerate the drive towards achieving Net Zero emissions, including a new target to cut carbon in half by 2030 across its full value chain. The strategy also involves investing US$1bn over the next three years alone to drive climate action

The strategy incorporates an understanding of how supplier engagement, supply chain and procurement impacts their environmental footprint, as 80% of it comes from their inputs such as raw materials, packaging and logistics.

“The carbon footprint of our entire supply chain from farming through to the end of life of our packaging and everything in between is the same as that of a small country – Finland has almost exactly the same footprint,” explains Barry Parkin the Chief Procurement and Sustainability Officer at Mars Inc. “When we look at where our footprint was ten years ago, 70% or more of it is embedded in the goods or services we buy. So, procurement is therefore absolutely critical.”

This means the role of procurement, supply chain, and supplier engagement is integral to the company reaching their ambitious sustainability targets, and Parkin is acutely aware that means it is essential for them to do things differently. “Our job is to re-imagine and re-design supply chains so that they have a dramatically lower carbon footprint,” he says. “To put it another way, unless we change what we buy, or where we buy it or how we buy it we are not going to really change our carbon footprint. ”

Their roadmap involves removing approximately 15 million metric tons by 2030 and then another 15 million metric tons by 2050 when they reach net zero.  Since 2015 Mars have already reduced emissions by 8%, whilst growing the business by 60%, showing that it is possible to decouple emissions from growth and success of a business.

 

Supplier relationships 

As for any major organisation trying to address their sustainability strategy, it is impossible for Mars to make significant progress with their carbon footprint without the help and buy-in from their enormous supply networks.

“As a global company, we rely on suppliers across our value chain as essential partners in our journey to reach net zero,” says Parkin.  “Like most companies, addressing our Scope 3 emissions is challenging because of their indirect nature and our lack of direct control or visibility. Only by working with our Tier 1 suppliers can we make progress with them on their own emissions and on their upstream emissions with our Tier 2 suppliers and beyond.”

Mars was a founding member of the Supplier Leadership on Climate Transition coalition, that is a dedicated body for instigating climate action through industry-wide supply chains.  This allows companies like Mars to use their scale and influence to guide, mentor and train suppliers with emissions strategies and also celebrate their best practice.

This reflects the collaborative approach Mars is trying to adopt with all their stakeholders to reach their climate targets.  “Suppliers that demonstrate substantial progress in reducing their environmental footprint are recognised and rewarded with additional business,” explains Parkin. “This metrics-driven strategy ensures that our suppliers have a significant role in our journey towards sustainability, aligning their efforts with our commitment to addressing the climate crisis.”

To achieve this relationship, Mars sets clear expectations for suppliers regarding emissions reduction, renewable energy adoption, and sustainable sourcing. They then incorporate those climate performance metrics into some of their biggest supplier’s evaluation criteria.

 

Recipe optimisation 

For one of the global leaders in food products, pet supplies and confectionery, they are also able to leverage product design and ingredients into their net-zero strategy.  Mars describes that as ‘optimising recipes’ and procurement is again integral in making that aspect of the plan a success.

“Our procurement team actively collaborates with suppliers to identify and source new ingredients in a way which lowers emissions and advances our sustainability goals,” says Parkin. “This collaborative approach helps improve our supply chain sustainability performance, including the procurement of ingredients that have a reduced carbon footprint.”

This approach of working closely with the suppliers who provide the ingredients, allows Mars to enhance their product offerings while at the same time finding new ways to reduce the emissions associated with the recipes.

 

Buying-in to the road map 

Parkin is praising the positive reaction from their suppliers to the Net Zero Roadmap, but that is also because many of those partners have been on a sustainability journey with the company for a number of years, since setting out their first scope 3 targets for their full value chain back in 2017.

“Suppliers have expressed their appreciation for the transparency and specificity of our roadmap,” explains Parkin.  “It has enabled them to better understand our expectations and how their contributions fit into the broader picture of achieving net zero emissions. The roadmap’s emphasis on collaboration and collective responsibility has resonated with our suppliers, fostering a spirit of partnership in our shared journey towards sustainability.”

The partnership allows procurement partners to take proactive steps in their organisations and strategies to address their emissions, and be part of a collective responsibility to finding both a sustainable future and a productive business relationship.

Aside from the influence such an ambitious net-zero strategy has on the culture and direction of a company like Mars Inc, it also creates a larger impression on other companies in their business ecosystem as other brands and businesses look to follow their lead.

Barry Parkin is aware of the value of that influence, and how their procurement and supply chain can help lead others to greater sustainable achievements.

“Global companies like Mars play an important role in shaping sustainability standards and advancing climate action at scale,” he explains. “Our influence extends across the globe, allowing us to inspire change on a wider scale. When companies set high sustainability standards, it encourages others in their industries to follow suit.”

He adds: “Companies like Mars have the resources, expertise, and innovation capabilities needed to pioneer sustainable practices and technologies.

“We can invest significantly in research and development, pilot groundbreaking initiatives, and implement sustainable solutions beyond the reach of smaller organisations. This proactive approach not only benefits the environment but also builds a positive reputation with environmentally conscious consumers and attracts like-minded partners.”

If a globally recognised brand like Mars can leverage their sprawling supply and procurement network for better environmental outcomes, it can only help to bring others on the same journey. “This ripple effect fosters industry-wide transformation, promoting a more sustainable future,” finishes Parkin. “If a business such as Mars can halve it’s footprint by 2030, that matters.”

 


 

 

Source   Sustainability

Larger Cargo Bikes in NYC Transport More Goods

Larger Cargo Bikes in NYC Transport More Goods

City is considering larger cargo bikes in NYC to transport more goods in more places.

New York City may soon permit larger cargo bikes in NYC to legally operate on its streets in a move that could substantially grow urban freight delivery by cycling. The NYC Department of Transportation proposed new rules that would legalize pedal-assisted electric cargo trikes up to 10 feet long and 10 feet high.

If adopted, the larger trike dimensions would enable more goods to be transported by bikes rather than vans and trucks. Advocates say embracing cargo bikes tailored for commercial uses can reduce traffic, pollution, noise, and curbside congestion caused by urban delivery vehicles.

Under current regulations, only smaller cargo bikes meeting dimensions for standard bicycles are street-legal in NYC. Larger cargo bikes in NYC are all but inevitable; cargo trikes exceeding those size limits have become popular for urban logistics in other US and European cities.

The proposed guidelines for larger cargo bikes in NYC would align with size allowances for cargo trikes in cities like Seattle, Detroit, and Philadelphia. The NYC DOT stressed cycling freight remains supplementary to traditional truck delivery but offers environmental benefits.

Larger cargo bikes in NYC can “provide increased hauling capacity compared to smaller bicycles…potentially reducing reliance on truck trips and promoting a more sustainable city,” the agency stated.

Expanding cargo bike delivery supports sustainability goals in New York City’s 25-year master plan released in 2021 aimed at equitable climate action. The plan’s transportation section calls for transitioning to cleaner freight options to reach carbon neutrality.

Advocates say allowing larger cargo bikes in NYC tailored for commercial uses would align with the master plan’s priorities. They argue substituting just one fossil fuel-powered delivery truck or van with an electric-assisted cargo trike prevents significant emissions over time. Each trike potentially displaces those larger, polluting vehicles that are worsening both congestion and air quality on NYC streets.

Wider cargo bike adoption can make a meaningful dent in transportation emissions, accounting for nearly 30% of New York City’s total carbon footprint. Cargo bikes also alleviate other pressures urban delivery vehicles create, such as noise, parking limitations, road safety concerns, and decreased public space. Unlocking the potential of micro-mobility freight options like cargo trikes is key to reaching the sustainability vision outlined in the 25-year plan.

The larger cargo bikes in NYC would utilize electric assist motors to haul substantial loads up to 500 pounds with minimal strain compared to pedaling those heavy full loads. Their three-wheeled stable design and sturdy hauling strengths make these cargo trikes ideal urban delivery vehicles for short distances or last-mile trips from distribution hubs. Cargo bikes’ small size, maneuverability, and zero direct emissions also let them nip through urban traffic easily for swift point-to-point goods movement.

Commercial cargo trike models can have front buckets or storage bins to securely transport goods, food orders, packages and more. Some designs allow custom boxes or refrigerated containers to be attached.

Logistics companies like Amazon, UPS, and FedEx already use cargo trikes in a few American cities to shortcut traffic in dense areas. Smaller NYC firms have recognized their benefits as well. For example, Gotham Greens, an urban produce grower, relies on a fleet of cargo bikes to distribute fresh salad greens to local restaurants and stores from their rooftop greenhouses. Beer distributor TriBeca deployed heavy-duty e-trikes last year capable of carrying 800 lbs of beer kegs to pubs and restaurants. They aim to replace several delivery vans to cut diesel emissions.

Experts say each switched delivery from vans to bikes eliminates, on average, about 7 tons of carbon dioxide emissions annually. Less truck traffic and parking also create safer, quieter streets.

But despite their promise, cargo bikes presently make up a tiny fraction of urban goods movement. Questions remain over whether larger cargo bikes in NYC could substantially dent air pollution and congestion woes created by the over 65,000 daily truck trips.

The NYC DOT will collect public feedback on proposed cargo trike regulations this spring before finalizing new rules. Customized trike manufacturers and logistics firms will be watching closely.

Larger cargo bikes have carved growing niches abroad in Amsterdam and London. For cycling advocates, allowing them in New York City could be a critical step to build momentum for sustainable urban freight.

 

 


 

 

Source  Happy Eco News

Low Carbon 3D Printed Homes – Lower Cost too

Low Carbon 3D Printed Homes – Lower Cost too

An emerging application of 3D printing technology is fabricating entire homes through additive manufacturing. Early adopters demonstrate that 3D printing residential buildings carry significantly lower embedded carbon than conventional construction methods.

By optimizing materials and printing processes, 3D home printing could provide affordable, efficient, low-carbon housing to growing populations if adopted at scale.

Also known as additive manufacturing, 3D printing builds structures by depositing materials layer by layer according to digital models. Concrete is typically extruded through a moving print nozzle onto a substrate, hardening upon deposition to gradually form walls and roofs of low carbon 3D printed homes.

Companies pioneering low carbon 3D printed homes include Icon, SQ4D, and Mighty Buildings. Their printed concrete or polymer designs streamline manual labor of framing, insulation, and finishing. Architectural designs are also easier to customize versus cookie-cutter manufactured units.

But the sustainability benefits are among the most significant advantages over current construction. Architect Sam Ruben, an early adopter of 3D printing for eco-homes, states that 3D printing can reduce lifecycle emissions by over 50% compared to standard building techniques.

Part of the savings comes from more efficient material usage. Conventional construction methods are wasteful, generating excessive scrap materials that go to landfills—3D printing deposits only the needed amount layer-by-layer, eliminating waste.

Printing also allows easier integration of recycled components like crushed concrete aggregate into prints, diverting waste streams. And lightweight printed structures require less embedded energy to transport modules. Optimized print geometries better retain heat as well.

But the biggest factor is speed – printed homes can be move-in ready in days rather than weeks or months. A standard SQ4D home prints in just 8-12 hours of machine time. Accelerated production means less energy consumed over the total construction period.

And speed has financial benefits, too, reducing the logistical costs of prolonged projects. Combined with simplified labor, 3D printing can cut estimated construction expenses up to 30%. Those cost savings make printed homes more accessible to low-income groups while stimulating large-scale adoption.

To quantify benefits, Mighty Buildings completed a life cycle assessment comparing their printed composite polymer dwellings against conventional homes. They estimated their product cut emissions by over one-third during materials and construction. Waste production dropped by over 80%.

Such data helped the company achieve third-party verified EPD declarations certifying their low carbon 3D printed homes. Mighty Buildings believes printed homes could eliminate over 440 million tons of carbon emissions if comprising 40% of California’s housing needs by 2030.

Despite advantages, barriers remain to limit widespread 3D printed housing. Printed buildings still require finishing like plumbing, electrical, windows, and roofing. Developing integrated printing around and including those elements will maximize benefits.

High upfront printer costs also impede adoption, though expected to fall with scaling. And building codes need updates to cover novel printed structures despite proven duribility. Some jurisdictions like California are pioneering efforts to add low carbon 3D printed homes as approved models in housing codes.

But if technical and regulatory hurdles are resolved, additive construction could offer meaningful emissions cuts. With global populations projected to add 2 billion new urban dwellers by 2050, low carbon 3D printed homes may become a go-to sustainable building technique, especially in growing developing countries.

The urgent need for dense, low-carbon housing solutions to accommodate global populations makes 3D printing’s advantages stand out. Printed homes advance from gimmick to viable strategy against climate change.

Eco-conscious homebuyers on a budget have a new choice – low carbon 3D printed homes made from low-carbon cement. A new housing tract in Round Top, Texas has introduced small dwellings printed using concrete that produces just 8% of the carbon emissions of traditional Portland cement manufacturing.

Habitat for Humanity last year unveiled its first low carbon 3D printed home in Williamsburg, Virginia. The project represented Habitat for Humanity’s first completed 3D printed home in the country.

By combining 3D printing techniques with more sustainable cement mixtures, homebuilders can reduce the carbon footprints of affordable printed housing even further.

 

 

 


 

 

 

Source  Happy Eco News

New Carbon Capture Tech Turns CO2 into Solid Carbon

New Carbon Capture Tech Turns CO2 into Solid Carbon

New capture technology turns CO2 into solid carbon, a coal-like product that can be safely reburied.

Scientists may have discovered a groundbreaking new method to pull out of the air and convert CO2 into solid carbon flakes. Researchers at Australia’s Royal Melbourne Institute of Technology (RMIT) have pioneered an efficient carbon mineralization process using liquid metal catalysts. This technology could provide a sustainable way to capture atmospheric CO2 and safely store it long-term as a stable solid.

Most carbon capture techniques today focus on compressing CO2 gas into a liquid that is injected deep underground. However potential leakage risks make this method less than ideal for permanently storing billions of tons of carbon dioxide. We urgently need innovative solutions to remove and safely store the CO2 already overburdening our atmosphere.

That’s why RMIT’s new mineralization approach to turn CO2 into solid carbon is so promising. It converts greenhouse gases into inert carbon solids at room temperature. This offers a potentially cheaper, more secure form of carbon storage compared to current methods.

RMIT’s method utilizes molten liquid metals to trigger a chemical reaction, transforming gaseous CO2 into solid carbon flakes. This occurs at ambient temperature inside a simple glass tube device. The process works by sending CO2 into the glass tube containing a liquid metal alloy of gallium, indium, tin, and cerium. Running an electric current through the metal accelerates the carbon mineralization reaction.

Carbon steadily accumulates as a layer of solid flakes on the liquid metal surface and the only byproduct of the process is pure oxygen. The flakes are then removed allowing the process to continue indefinitely. Because this process occurs are room temperature, the energy requirements are far lower than other systems.

The researchers experimented with different metal compositions and temperature conditions to optimize the carbon conversion process. Once optimized, the system can continuously pull in and convert atmospheric CO2 into solid carbon without additional heat or pressure.

Unlike underground injection techniques, solid carbon can easily be collected for safe, permanent storage. The carbon solids could even be processed into materials like carbon fiber. And since the process only needs a small amount of electricity and air, it has minimal environmental impact or manufacturing costs.

Turning CO2 into solid carbon could be a more predictable, sustainable and longer lasting approach to carbon capture and storage. The RMIT team is already investigating ways to scale up the liquid metal carbon mineralization method. Adoption by power plants or heavy industry could significantly cut CO2 outputs.

Finding viable ways to remove excess greenhouse gases is critical to slow global warming. Since the Industrial Revolution, over 1.3 trillion tons of carbon dioxide have entered the atmosphere – and the pace is accelerating. New solutions like RMIT’s carbon mineralization technology will be essential to extracting legacy emissions already dangerously heating our planet.

 


 

 

Source   Happy Eco News

Can AI Ever Be Sustainable?

Can AI Ever Be Sustainable?

The AI genie is out of the bottle. There is no going back, but we can make it more sustainable. Here’s how.

AI is here, and it has a big footprint. As a recent article in the Guardian pointed out, AI is already a vast resource hog in its current form.

Like the intense energy consumption that the crypto mining industry experiences, the data centers that power the AI are already at par with and will soon exceed them; with AI, though,  the energy consumption problem is worse for a few important reasons. The computers that power crypto mining are a big part. Of course, they use a lot of energy; they are on the fringe of legality and social acceptance. Everyone knows it. Most of us have read about someone stealing power from the grid to power illicit mining rigs.

But not so with AI.

To most who use it, using an AI like Microsoft Bing or Google Bard feels like using a search engine. You type your search term or query, and a second later, you receive the reply. Repeat and refine as you go. It seems simple and harmless; after all, the companies that run these machines are some of the most trusted household names.

You don’t search for something; you Google it.

But behind the scenes are millions upon millions of connected computers housed in large data centers. Most are in faraway places with low taxes, cheap power, and lots of free water.

Water, because it’s not just about energy anymore either; it’s now also about water as a coolant. These machines generate immense amounts of heat as they process all the information required to create the silicon functional equivalent of thousands of artificial brains. Water cooling is the best way to get the heat out of the machines. The cheapest way to do that is to have a large constant supply of fresh water that can enter the system cool and exit the system hot – bringing with it the excess heat created in the machines.

There are other unaccounted costs as well. According to Uptime Institute’s Global Data Center Survey 2021, the global data center industry replaces an estimated 2.5 million servers annually. This number will grow to 3.2 million servers by 2025. Sure, some are recycled, but if the number is the same as general electronic waste, only 17.4% of servers are recycled, and the vast majority end up as e-waste.

Despite this bleak picture, I’m confident it will get sorted quickly. At a glance, the focused use of renewable energy generation for data centers is an evident and technologically-ready solution. Solar power installation is currently 90% cheaper than ten years ago and is still falling, even during this inflation period.

The cost of solar panels has fallen by about 80% in the past ten years. This is due to the increasing efficiency of solar cells and the economies of scale achieved in the solar manufacturing industry. The cost of other components, such as inverters and mounting systems, has also fallen in recent years. Governments in many countries have offered financial incentives to encourage the adoption of solar power. These incentives have helped to reduce the cost of solar power installation due to a surge in availability and local production of high-quality solar panels.

In the case of data centers, the energy required will come from renewables and will not have the same footprint as it did five or even ten years ago. In some cases, the energy consumed will have a net zero or possibly a negative carbon footprint.

Solution Water

Closed-circuit geothermal cooling systems are an evident and easy-to-implement solution for water consumption. Rather than using the cold water from a river or reservoir and risk heating and damaging natural river and lake systems, geothermal systems can create a contained and efficient cooling system.

For smaller systems, a ground-source heat pump would suffice. This type of system uses a series of pipes that are buried in the ground to extract or transfer heat. The pipes are filled with thermal conductive fluid that is cooled by the ground. The cooled fluid is then circulated through the data center and used to cool the servers inside.

For larger systems, a water-source heat pump would provide cooling. This type of system uses water pumped from a well into the data center to extract heat and cool the servers. The heated water is pumped back into the well to be cooled by the Earth, and the cycle begins again, with the only operational cost being the pumps that circulate the water.

Geothermal systems are very efficient at extracting or transferring heat. This can help to save energy and money on cooling costs. Geothermal systems can run on renewable energy, so do not produce any emissions and do not cause immediate damage to riparian areas, so they are considered environmentally friendly. Finally, geothermal systems are very reliable and can operate for many years without any problems and require little maintenance and can last for up to 50 years in ideal conditions.

Solution Hardware Churn

The automatic and mindless replacement of millions of servers worldwide seems flawed. Indeed, there are business critical machines that must be replaced to have 100% uptime, but applying that mentality to all servers is extreme and flawed. It results in unnecessary waste of machines that are still fit to function, until something fails.

The servers could be made to last longer. Currently, due to technology upgrades and other factors, the average lifespan of a server is only 3-5 years. The major hardware components of servers could easily be designed to last 20 or more years with only upgrades to specific components as technology increases. This would ensure they maintain valuable and relevant for the longest period of time and would save enormous amounts of valuable hardware resources from ending up in the waste pile.

The components and systems that must be replaced could be recycled more effectively, with much of the precious elements recaptured for reuse in new components. Similar to the recycling systems now being deployed by ROSI in France for solar panels, the same process could be applied to servers and their components. In the ROSI system, 99% of the elements in a solar panel can be recaptured. Severs have a variety of precious elements inside them; a high-efficiency recycling process would recapture gold, silver, platinum, copper, and palladium.

A Bigger (Flawed) Picture

The bigger problem is the fact that the current AI business model is flawed. Most AI programs are run as typical capitalist profit machines, only open to the public as toys and tools for writing or entertainment. The is a gold rush mentality right now where all the players are vying for position and the attention of investors.

To be successful, therefore, they need to exploit resources (energy, water, and hardware) as cheaply as possible to make the product that they sell for as high a price as possible. If the actual cost of the energy and water were factored in – cost to society and the planet – many of these so-called profit centers would disappear overnight.

It is hard to believe that some of the largest companies in the world, which, through the application of proprietary AI, are fundamentally changing the way humans live and work, are not paying their fair share of taxes. These companies are making billions of dollars in profits while striking deals with governments to avoid paying the true costs of running their businesses.

They set up in low or no-tax jurisdictions manipulating local governments who make concessions to normal business applications based on the promise of offshoots or trickle-down economic benefits, such as jobs and ancillary services. But if the situation becomes less than favorable, these mega companies leave town and move on to the next host like a parasite.

This is no different from many other subsidized, so-called capitalist businesses. Most of the fossil fuel industry, bottled water, junk food, wheat, soy, automotive, and many other industries would simply not have a business case if the actual cost of production was felt. If the real cost to operate an AI data center were factored in, fewer people would be using it. That could be a good thing.

Do we need to rely on AI more than we do already? Let’s be real; we were able to communicate, make recipes, plan our trips, and all the other things before AI; there is no reason we can’t do it now too.

The Solution

If there was a requirement for AI companies to manage their own environmental impact, for real, and if there were strict controls on the use of AI. It could begin to be used for a higher purpose. It would be used for things like reducing the effects of climate change, developing drought-resistant crops, fixing broken cities, improving the welfare of developing nations, or for medical advances like less invasive therapies, advanced antibiotics, and vaccines.

The best part is that all this is possible and happening now. Many governments are placing tighter restrictions on the use of AI, and others are forcing big corporate consumers to include a full accounting of all their combined footprints. These days, the responsible corporation includes details of all aspects of its footprint. AI is already being used for the benefit of society and the planet, we just need to find the right balance of use and benefit, and I believe we can; it’s just a matter of time.

Knowing that makes me very hopeful for the future and the use of AI.

 

 


 

 

Source  Happy Eco News

Nestlé & Cargill use cocoa shell in new lowcarbon fertiliser

Nestlé & Cargill use cocoa shell in new lowcarbon fertiliser

Approximately 5% of global greenhouse gas (GHG) emissions are currently produced from the production and use of conventional fertiliser, and more than half of the carbon footprint of wheat grown in the UK is related to fertiliser use.

Nestlé UK & Ireland and Cargill have partnered to develop innovative solutions in regenerative agriculture. The initiative — a UK supply chain trial — aims to assess whether cocoa shells from a confectionery site in York could be used to create a low carbon fertiliser.

The trial to evaluate the fertiliser’s performance on crop production, soil health and GHG emissions reduction will last two years, and, if successful, could produce and offer up to 7,000 tonnes of low carbon fertiliser to farmers in Nestlé’s UK wheat supply chain. This amount of fertiliser equates to around 25% of Nestlé UK’s total fertiliser use for wheat.

“Farmers often find themselves to be among the first groups to be exposed to global issues, and these risks are then borne by the food system we all depend upon,” shares Matt Ryan, Regeneration Lead at Nestlé UK & Ireland.

“We have to find ways to build more resilience into the system and optimising our use of natural resources is a critical part of this.

“This project is a small, but very meaningful step towards a net zero future, where farmers, local enterprises, and nature all stand to benefit”

 

Reducing emissions across the supply chain

Cargill supplies the cocoa shells from its York facility where the shells are processed to become key ingredients in iconic products like KitKat and Aero.

Recycling valuable nutrients from waste streams within the food system provides a promising opportunity to create a lower emissions supply chain. Scaling up low carbon fertiliser production in the UK can provide farmers with a more sustainable product at a reliable price.

The trials, which were designed and are being overseen by York-based Fera Science Ltd, are currently taking place on arable farms in Suffolk and Northamptonshire. They are designed to investigate the performance of the fertiliser in terms of wheat yield and quality, as well as assess the impacts on soil biodiversity and GHG emissions in comparison to conventional products applied on the same farms.

“We have now finished harvesting and we’ve successfully grown a Winter wheat crop using this new fertiliser. We’ve compared two parts of the field, one which used the cocoa shell fertiliser, and one which used with the conventional fertiliser, and there is no significant difference in the yield so we can see that it works,” says Richard Ling, farm manager at Rookery Farm, Wortham in Norfolk, who supplies wheat to Nestlé Purina.

“We are really reassured with the results and are looking at running further trials. It’s a step change to be able to use a fertiliser made from a waste stream and see the same results as using a conventional product. It’s an exciting and promising time and we are pleased to be taking part in these trials to help reduce the carbon emissions from our farming.”

For all companies involved, the trial embodies their commitment to innovation, collaboration and sustainability throughout the supply chain. Alongside its pledge to net zero emissions by 2050, Nestlé has committed to sourcing 50% of its key ingredients from regenerative agricultural methods by 2030 and this project is an example of the innovative solutions supporting the company on that journey.

“Cargill and Nestlé have been working together for more than 60 years building resilient supply chains across communities where we both operate. We are excited to continue to build on this strong partnership through our innovative cocoa shell fertiliser trial,” says Sam Thompson, Global Engineering Lead at Cargill Cocoa & Chocolate.

“Together, we hope to contribute to a more sustainable future for the British farming industry.”

 

 


 

 

Source  Sustainability 

 

 

Green IT for a Greener Future

Green IT for a Greener Future
Exploring a Green IT strategy isn’t solely about cost and carbon reduction – it’s a pledge to stakeholders

Tell us about Doji?

Doji offers innovative Green IT solutions that empower businesses and individuals to cut emissions and costs through a circular approach. Our unique marketplace, with operations in the U.K. and Brazil, connects enterprises and individuals, enabling them to secure certified refurbished devices and explore options like selling, trading, donating, or recycling existing tech, all with an eco-friendly process while tracking emissions.

We advocate for verified refurbished devices, helping users lower expenses and emissions while advancing Net Zero goals. This showcases our commitment to sustainable consumption and positions Doji as a leader in driving an environmentally conscious future.

How Serious is the Electronic-Waste Challenge?

E-waste, dubbed a ‘tsunami’ by the UN, is the world’s fastest-growing waste stream. In 2021, it hit 57.4 million tonnes, exceeding the Great Wall of China’s weight. Alarmingly, user devices, including smartphones and tablets, emit 1.5 to 2.0 times more carbon than data centers (1). These emissions are projected to increase by 12.8% annually (2), with around 75% arising from manufacturing, transportation, and disposal. Doji tackles this by enabling longer tech device lifecycles.

How Does Doji Aid Organizations in Lowering IT Carbon Footprint and Gaining Benefits?

A rapid and effective way to slash IT Carbon emissions is through a Green IT strategy for tech procurement, where Doji excels.

Doji offers top-quality certified refurbished business devices, negating the need for new ones that generate 70-80% more CO2, primarily in manufacturing. Refurbished IT offsets ‘CO2 costs’ during production over extended use, reducing waste and enhancing environmental balance.

Companies can also recycle old tech through Doji—selling, trading in, recycling, or donating through Doji’s charity partners. Doji also provides carbon accounting, offset projects, and tools for sustainable workplace consumption through its partners.

Overall, the Green IT strategy enhances company reputation, furnishes budget-friendly top-notch hardware, and frequently yields significant savings while also driving positive environmental and social impact.

Besides sustainability, quality, and cost, what should IT decision-makers consider when exploring refurbished IT, especially with Doji

IT leaders should focus on certified data deletion, strong customer service, transparent practices, and supplier commitment to sustainability when opting for refurbished IT. At Doji, sustainability is our driving force for business success, championing a profound shift toward a more environmentally conscious future.

And finally, what does Doji mean, and why did you choose it?

Originating from Japanese candlestick charting, my co-founders and I, who met while studying at the University of Oxford, chose ‘Doji as it symbolizes price equilibrium between buyers and sellers, reflecting our commitment to fairness for all parties, including the environment.

How Does Doji Aid Organizations in Lowering IT Carbon Footprint and Gaining Benefits?

A rapid and effective way to slash IT Carbon emissions is through a Green IT strategy for tech procurement, where Doji excels.

Doji offers top-quality certified refurbished business devices, negating the need for new ones that generate 70-80% more CO2, primarily in manufacturing. Refurbished IT offsets ‘CO2 costs’ during production over extended use, reducing waste and enhancing environmental balance.

Companies can also recycle old tech through Doji—selling, trading in, recycling, or donating through Doji’s charity partners. Doji also provides carbon accounting, offset projects, and tools for sustainable workplace consumption through its partners.

Overall, the Green IT strategy enhances company reputation, furnishes budget-friendly top-notch hardware, and frequently yields significant savings while also driving positive environmental and social impact.

Besides sustainability, quality, and cost, what should IT decision-makers consider when exploring refurbished IT, especially with Doji

IT leaders should focus on certified data deletion, strong customer service, transparent practices, and supplier’s commitment to sustainability when opting for refurbished IT. At Doji, sustainability is our driving force for business success, championing a profound shift toward a more environmentally conscious future.

And finally, what does Doji mean, and why did you choose it?

Originating from Japanese candlestick charting, my co-founders and I, who met while studying at the University of Oxford, chose ‘Doji as it symbolizes price equilibrium between buyers and sellers, reflecting our commitment to fairness for all parties, including the environment.

 

 


 

 

Source  Sustainability

TreeTote: The Tote Bag That Saves +1100 Liters of Water

TreeTote: The Tote Bag That Saves +1100 Liters of Water

Did you know that a cotton tote bag consumes +1141 liters of water to be produced?

Cotton tote bags have flooded the market. Originally manufactured to combat single-use bags, this bag has become a trendy accessory. Brands have turned it into a true cult accessory. Yet, cotton tote bags are an ecological disaster. Cotton production involves astronomical amounts of water and pesticides, leading to soil drought and the development of dead marine zones.

In recent years, the “ fiber gap” phenomenon has appeared. Demand for cotton continues to rise while supply decreases. The consequence is skyrocketing prices. Natural fibers like cotton are increasingly being replaced by fibers derived from fossil resources. Cotton is predominantly produced in Asia and requires intercontinental transportation. Off-centre cotton supply chains release large amounts of CO2.

Organic growing systems are better for the soil as they maintain a higher soil quality, which reduces the runoff into local rivers. The soil is also much more resilient and can withstand extreme weather. Healthy soil acts like a sponge – it can absorb and retain water for longer periods, including droughts. This leads to a much lower consumption of organic cotton though it remains 90% higher than our lyocell wood fibre.

The Tree Tote

The TreeTote, a 100% wood fiber tote bag, was developed to address these challenges. Our totes are made from 100% European production. We keep our supply chain as close as possible to reduce CO2 emissions related to transport while producing a socially responsible and affordable bag. Our supply chain is exclusively European and includes three streams: Made in Europe, Made in the Alps and Guaranteed French Origin. The entire supply chain is traceable via the Respect Code on all our bags. By scanning the QR codes on our bags, you will see the entire journey from research to development, raw materials, production, distribution and use.

The prime material for our bags is timber, and they are made from 100% wood fibre from sustainable sources. Of the tree species used in the sourcing of wood for the TreeTote, the main contender is Beech. Beechwood availability is increasing as forests are being returned to a more natural species mix. Rising temperatures are also increasing its growth rate. This beech wood comes purely from PEFC/FSC-certified sources.

The material is generated by thinning or damaged wood left over from other operations. Almost all of the wood used to produce the TreeTote comes from Austria, where the fibre is produced. The rest comes from neighbouring countries, minimising transport and therefore the carbon emissions that come with it. Transport is highly optimised to keep our carbon footprint to a minimum. Shared transport is used whenever possible and, for longer distances, low-emission transport such as trains is prioritised.

Over 99% of the solvent used is recovered and recycled, and water consumption is reduced drastically. Even sustainable bags use plastic thread and tags, which are cheaper and widely available. We stray from plastic and only use TENCEL accessories to make our TreeTote 100% wood fiber. We also don’t add any extra mechanical or chemical steps to the line after weaving, which is rare in textile production, to save energy and water.

Regarding the water used to produce our tote bag, we achieved a 90% reduction in water consumption. If we compare our tote bag to a conventional cotton bag, which uses about 1200L of water, we reduce consumption by 99%. In the case of organically grown cotton, the reduction reaches 90%. Over 39,158,595 liters of water have been saved by TreeTote so far as a replacement for cotton bags.

Because dyeing, and the processes that come with it, have an enormous impact, especially due to water use for the dying itself and the washing steps that follow. We, therefore, choose to work with the fabric in its natural white colour.

OEKO-TEX® STANDARD 100 is one of the world’s best-known labels for textiles tested for harmful substances. It stands for customer confidence and high product safety. TreeTote has been awarded Class I certification, complying with the label’s strictest requirements.

After using the tote bag as many times as possible, we recommend recycling it with textiles as this is the highest value disposal. The Tree Tote is also 100% compostable.

 

 


 

 

Source   Happy Eco News