Search for any green Service

Find green products from around the world in one place

Recycling Cigarette Butts into Asphalt

Recycling Cigarette Butts into Asphalt

Cigarette butts are the most littered item worldwide. Over 4.5 trillion cigarette butts pollute our environment every year. They do not easily biodegrade and are full of chemicals that are toxic to the wildlife that may ingest them. They are small individually, but they add up to a big problem. A waste management company in Bratislava, Slovakia, has found a new way of recycling cigarette butts, and that is by transforming cigarette butts into asphalt.

The environmental effect of cigarettes

More than 6 trillion cigarettes are smoked yearly around the world. You are probably familiar with how cigarettes cause air pollution due to the burning of tobacco, which releases harmful chemicals into the air. But did you know the butts from cigarettes are the most common form of personal litter in the world?

In the world total, cigarette butts make up more than one-third of litter. While cigarette butts may look like cotton, they are made of plastic fibers which are tightly packed together. And because they are made from man-made materials, they won’t organically break down into the environment.

Moreover, because cigarette butts are made of toxic chemicals when they are disposed of improperly, these chemicals (such as nicotine, lead, cadmium, and arsenic) will leach into the environment. The toxic chemicals can find their way into rivers, lakes, and oceans, harming aquatic life and contaminating water sources. There is also a risk of wildlife mistaking cigarette butts for food, accidentally injesting them.

Transforming cigarette butts into asphalt

A municipal waste management company in Bratislava, Slovakia, is pioneering a new way of recycling cigarette butts. At the end of 2023, the company trialed special containers designed to collect standard cigarette filters and those found in modern heated tobacco devices like vapes. And placed them around the city.

In collaboration with companies SPAK-EKO and EcoButt, the Bratislava City Council will be recycling cigarette butts to use the discarded materials to create asphalt for roads. Once the filters have been collected from the specialized bins, they will undergo a cleaning process to remove toxins and any residual tobacco. The cleaned filters are composed of cellulose acetate from the filters, which are then transformed into fine fibers. The fibers are mixed with traditional asphalt materials, which help with the asphalt’s durability and longevity.

The final product can be used just like conventional asphalt for creating new roads or repairing existing ones.

This isn’t the first time Slovakia is recycling cigarette butts into asphalt to be used on their roads. Their first cigarette filter road is located in  Ziar and Hronom and was the first in the world.

With this program, cities in Slovakia can encourage people not only to stop throwing their cigarette butts on the ground, where they will do harm to the environment. But this project can also show people how they can participate in sustainable urban development.

Recycling cigarette butts into asphalt can also help reduce the environmental impact of the construction industry. The production of asphalt involves heating and mixing aggregates with bitumen, a petroleum-based binder. This process releases greenhouse gases and other air pollutants, contributing to air quality issues and climate change.

Rainwater runoff from asphalt surfaces can carry pollutants, such as oil, heavy metals, and chemicals from vehicle exhaust, into waterways, potentially contaminating aquatic ecosystems. Recycling cigarette butts in the asphalt may help absorb and reduce many of these environmental harms and could change how we construct our roads.

Cigarettes might not be disappearing in the very near future, but we can find ways to make them less damaging to our planet and help cities be a little cleaner. Providing users with these specialized cigarette butt bins is one way to keep cigarette butts off the ground and out of our waters. And repurposing these butts is one way we can support a circular model and reuse and repurpose our resources.

Slovakia has a very innovative plan, and we hope it catches on around the world.

 

 


 

 

Source   Happy Eco News

Solar Farms Help Bees: Solar Installations for the Bees

Solar Farms Help Bees: Solar Installations for the Bees

Solar farms help bees: Solar farms emerging as sanctuaries for declining wild and honey bee populations.

In an unexpected turn, solar farms help bees and are emerging as potential sanctuaries for declining bee populations, providing a secondary purpose beyond clean energy generation. A recent study reveals that strategically planting native flowers and grasses around solar installations significantly enhances the population and diversity of crucial pollinators like bees, offering a promising avenue for both clean energy expansion and environmental conservation.

Research conducted by scientists from the Department of Energy’s Argonne National Lab, in collaboration with the National Renewable Energy Lab, focused on assessing the impacts on insects from two large solar installations situated on retired farmland in Minnesota. Enel Green Power North America, the operators of these solar sites, undertook the initiative to plant wildflower mixes alongside the panel arrays during construction in 2018. The researchers then conducted comprehensive year-round insect surveys at these facilities from 2018 to 2022.

The findings from the study are nothing short of remarkable; solar farms help bees. Over the five-year observation period, both native bee and monarch butterfly populations increased more than twenty-fold. The areas surrounding the solar panels transformed into thriving, prairie-like habitats abundant with essential flowering nourishment. The overall insect populations tripled, surpassing initial expectations. Additionally, these flourishing hubs of pollinators are extending benefits to vegetation in nearby agricultural areas, as evidenced by satellite imaging.

Dr. Lee Walston, an ecologist at Argonne and the lead author of the study, expressed enthusiasm about the scale of positive influence managed solar landscapes can have on insect biodiversity and abundance. The strategic integration of natural ecosystem elements adjacent to renewable projects, as demonstrated in this study, could potentially offer a win-win scenario, supporting the expansion of clean energy infrastructure while addressing the decline in insect populations.

The research underscores the concept of “solar sharing” – a departure from the traditional approach of isolating solar infrastructure from its surroundings. By allowing vegetation to thrive around solar facilities, solar farms help bees, and a new haven is created to support fragile bee colonies. The collapse of global bee populations poses a severe threat to agriculture, as over $500 billion in crop production relies on natural pollination annually.

But it doesn’t have to be only about the bees. Agrovoltaics refers to co-locating agriculture and solar photovoltaic systems on the same land. The solar panels are elevated and spaced out to allow crops to be grown underneath while allowing sunlight to reach the crops. The partial shade created by the solar panels can benefit certain crops by providing shelter, reducing evapotranspiration, and lessening weed pressure. The crops benefit the solar infrastructure by reducing heat under and around the panels.

Some bee-friendly crops and flowers that could thrive under the partial shade of solar panels include potatoes, cabbage, kale, carrots, Brussels sprouts, celery, spinach, onions, garlic, lettuce, arugula, strawberries, asparagus, leeks, swiss chard, parsley, oregano, green beans, sunflowers, cosmos flowers, marigolds, clovers, borage, and many varieties of wildflowers. These provide nutrient-rich pollen and nectar that support diverse bee populations.

These findings open the door to a new perspective on the relationship between solar power and ecological conservation. Instead of erecting barriers, solar infrastructure can be designed to coexist harmoniously with the environment. The success observed in this study suggests that solar farms help bees and can play a crucial role in aiding declining bee populations, offering hope for preserving essential pollinators.

As the world grapples with the urgent need for sustainable practices amid the climate crisis, the authors hope these groundbreaking findings will inspire further research. Exploring habitat-friendly solar blueprints to integrate nature into the urgent climate transition could be a transformative step forward. Dr. Walston emphasized the potential symbiosis between solar power and ecological conservation, envisioning bees flocking to blossoms beneath solar panels, which may reveal surprising pathways to advance sustainable energy and agriculture concurrently.

In conclusion, solar farms help bees. Once seen solely as agents of clean energy, they are now emerging as potential allies in the crucial mission to preserve and protect bee populations. This unexpected synergy between renewable energy infrastructure and environmental conservation opens doors to innovative solutions that could redefine the future of sustainable energy and agriculture.

 

 


 

 

Source   Happy Eco News

What corporations can learn from grassroot non-profits to achieve true sustainability

What corporations can learn from grassroot non-profits to achieve true sustainability

In this thought-provoking article, Benjamin Western, Head of Sustainability at certification, assurance, and expert trainer LRQA, explores the surprising synergy between non-profits and large-scale enterprises in the pursuit of sustainability.

In the Greek island of Lesvos during the refugee crisis, thousands of people forced into the life of being a refugee, found temporary shelter before moving on to somewhere more permanent. Many were provided with blankets provided by large global non-governmental organisations (NGOs). It was here, while working with a charity I was part of founding called Indigo Volunteers, that I saw a grassroots idea that has impacted how I see the world.

As people moved to other locations, most were unable to take their donated blankets with them due to having such limited space to carry belongings. Add to that the fact the blankets were not designed for reuse, and the vast majority ended up going to landfill, despite only being used a handful of times. Thankfully, we came across a remarkable grassroots charity that tackled this challenge head on.

The group called themselves “The Dirty Girls” and had a mission to help those in need while reducing the amount of waste that went to landfill. They did this by collecting abandoned blankets and cleaning them for redistribution. It’s a story of how a group of independent volunteers, without the funds or infrastructure of large NGOs, built something from the ground-up that saved significant money, and prevented further waste going to landfill. The lesson here is about collaboration, innovation, and integrity.

Integrity is doing the right thing, not finding the easiest solution. In this situation it is far easier to distribute single use blankets. This is what the large NGOs did. This is what almost all corporations would do. But the team knew it needed to address the infrastructure to find a solution that was cheaper and had a lower environmental impact.

The Dirty Girls did this through collaboration with the dozens of other grassroot organisations on the Island, as well as large NGOs. They built a network with small businesses who were willing to help at a reduced price, and of course, in understanding the reality and context of people forced into the life of a refugee.

Honesty and transparency: key to progress

In the corporate world, the work I am part of drives meaningful action on sustainability, in large part by finding those overlapping areas between environmental and business goals. I’ve seen how internal transparency can help avoid accusations of wrongdoing and accelerate corporate progress on environmental issues.

Honesty within business is required to better understand what’s working well, what’s not, and why that might be. Proactively sharing knowledge and experiences in an interdepartmental setting are fundamental for working towards a collective goal, and transparency, even in cases of failure, must become standard practice. In these cases, transparency about why shortcomings have happened – and the thought processes and decisions that led to that outcome – is key to progress.

Best practices

It’s impossible to properly consider a company’s ESG progress as if it exists in a vacuum. Every company has suppliers, and there’s a level of interdependency when it comes to sustainability. If one company can reduce its own emissions to zero, the reality is that, without helping the supply chain make progress, we’ll barely scratch the surface.

We can lead the way, though. Establishing best practices internally can set a company up for environmental success. These best practices include establishing a means of sharing successes and failures – and the thinking that lead to them – so good ideas can spread and less helpful ones can be avoided.

My hope is that departments and leaders can learn from one-another when it comes to reducing their impact on the environment. As one sub-team figures out what works, they can share that knowledge, and others within the business can follow suit. Similarly, if a particular practice is found to be ineffective, others can learn from them and work towards finding methods that advance their environmental goals.

Collaboration is the cornerstone of the approach that we take at LRQA. Our stance is clear: in a connected world, integrity, innovation and collaboration are vital. Companies must pool their insights to navigate global challenges. To do that, there needs to be a shift in corporate mindsets – one that recognizes transparency as a step toward stronger businesses rather than a reveal of vulnerabilities.

Long term thinking

Another practice that helps is taking a long-term view. Many of us think in three-month cycles, as that’s when quarterly reports are due to shareholders. If we have a bad quarter, it can be easy to move sustainability down the list of priorities as we extend all efforts to make sure the next quarter is better.

Playing the long game can mean persuading shareholders that changing from quarterly to annual reporting is better as it allows staff to focus on long-term progress in business and sustainability, and not get distracted by one underperforming period.

This long-term view is one way that I’ve seen the benefits of from a business perspective. It’s the same principle I learned from the Dirty Girls on Lesvos, and I try to apply it in all discussions about business practices.

With increased internal transparency and the proactive sharing of what works and what doesn’t, businesses can make better progress on emissions and energy reduction than they can by keeping their ideas siloed. Thinking longer term helps us stay focused on environmental and business goals, rather than periodic reports which can ultimately be a barrier to success rather than a tool.

Ultimately, the way we do business needs to change. The health of the planet is not something that we can take for granted and if we allow ecosystems to be damaged, it won’t be long until it impacts our supply chains and makes it impossible for many companies to stay afloat. Good environmental practice is good business practice, and we must make that part of our common thinking at every level of business.


Source   Sustainable Future News

Mush-Rooms: How Mycelium Concrete Could Revolutionize Building Construction

Mush-Rooms: How Mycelium Concrete Could Revolutionize Building Construction

Mush-Rooms: Mycelium concrete (Myocrete) could revolutionize low-carbon building construction and provide another tool for building green.

A new paper published by the University of Newcastle has outlined a new method of creating a mycelium concrete construction material, with potentially far-reaching changes as a result.

The Need for Low-Carbon Building Materials

Concrete, by far, is the world’s most used building material. It is cheap, incredibly strong, and easy to manufacture. However, it carries costs elsewhere in our world.

The environmental impact of concrete manufacture, use, and transportation is incredibly high. Concrete production is responsible for 8% of all greenhouse gases worldwide, making it the second largest source of greenhouse gas emissions. Natural materials like mycelium concrete (myocrete) might be part of the answer.

Burning fossil fuels creates most of these greenhouse gases to heat the enormous kilns used to create concrete. As well as that, there are the negative effects of mining the sand and gravel required to create concrete, which disturbs the environment and destroys natural ecosystems.

There is also the fact that concrete production requires massive amounts of water, which puts a strain on communities and areas already in need.

There have been some developments to make concrete less environmentally damaging, such as improving the efficiency of kilns so they don’t require as much heat; however, by and large, concrete production and use have been disastrous for our world.

Nevertheless, new developments have been underway to replace this widely used building material, such as mass timber. However, a unique and potentially revolutionary new material could be just around the corner, and it’s something that you’re probably more used to seeing on your plate than in your buildings.

Mushrooms in Our Walls

Mycelium-based construction material research, including mycelium concrete, has been underway for several years, as the effects of concrete production have been well-documented for decades. However, so far, the ability to scale and use mycelium in construction has been limited by the available technology and methods.

Currently, the method used in creating mycelium-derived construction materials is by filling a rigid mold with a mixture of mycelium and a food source such as grain for the mycelium. This method can produce rigid shapes, such as bricks, which can be used in construction.

However, there are limitations to the usability of these materials. For one, the strength required to compete with concrete isn’t there, and the rigid mold limits the variety of shapes and structures.

A new method created at the University of Newcastle, dubbed mycocrete (mycelium concrete), could completely change this and how construction has been done. The way mycocrete works is similar to past methods, with some distinctions.

One of them is in the mold that the paste is put into; where previous methods used rigid molds, mycocrete uses a permeable knitted mold that facilitates the growth of the mycelium by the amount of oxygen available. This flexible mold also allows the mycelium to grow in shapes that otherwise would be impossible with a rigid mold.

The process works by filling the knitted mold with a mixture of mycelium, paper powder, paper fiber clumps, water, glycerin, and xanthan gum. This is then hung up in a dark, warm, humid environment to facilitate the mycelium’s growth.

The result is a mycelium-based material significantly stronger than conventional mycelium bricks, notably much stronger than the material created with rigid molds. This is due to the amount of oxygen the mycelium has access to, given the mold’s permeability.

Myocrete is Still in the Early Stages, Though

However, despite the team’s promising results at Newcastle, myocrete mycelium concrete based buildings are still quite far off.

While continuing to develop the mycelium compound is still of major importance, the main obstacle is the fact that the factories and industries that work with the construction industry will need to be re-tooled for mycelium concrete along with new installation equipment being implemented.

Nonetheless, they have created some interesting prototypes, including the “BioKnit” project. This project was created to demonstrate the use of alternative materials in solving conventional construction design problems.

The team created BioKnit as one piece to limit weak spots inherent in joinery. Dr. Jane Scott, the author of the corresponding paper, said, “Our ambition is to transform the look, feel, and well-being of architectural spaces using mycelium concrete in combination with biobased materials such as wool, sawdust, and cellulose.”

With the priority being placed on reducing the environmental impact of construction, this new method could completely change the way we live and the spaces we live inside.

 

 


 

 

Source Happy Eco News

The Animals That Can Help us Reach our Climate Goals

The Animals That Can Help us Reach our Climate Goals

As humans try to fix the problems of climate change that they inevitably cause, they may be overlooking a very helpful, natural solution that could help restore ecosystems and capture and store carbon dioxide. Researchers from the Yale School of the Environment have found that robust populations of nine animal species could improve nature capture and carbon dioxide sequestration within ecosystems. They estimated that increasing the populations of African forest elephants, American bison, fish, gray wolves, musk oxen, sea otters, sharks, whales and wildebeest, among others, could lead to the capture of 6.41 gigatons of carbon dioxide annually. About 95 percent of the amount needed to be removed to ensure global warming remains below 1.5 degrees Celsius, a threshold set by the Paris Agreement.

The researchers found that in many cases where thriving populations of certain species were foraging, burrowing, and trampling, the ecosystem’s carbon storage increased by as much as 250 percent. This was a direct result of the dispersal of seeds and the growth of carbon-sequestering trees and plants. In Africa, every increase of 100 000 animals can increase carbon sequestered by 15 percent. Wildebeests consume carbon in the grasses they eat and then excrete it in their dung. The carbon is integrated into the soil by insects. Wildebeests also manage the grasses and help reduce the risk of wildfires.

Whales feed in deep water and release nutrients in their waste at shallower depths. This stimulates phytoplankton production, which is essential for storing carbon in the ocean. In the Amazon rainforests, tapirs are known to frequent areas that need reseeding. With a diet of herbs, shrubs, and leaves rich in nutrients, these animals leave trails of seeds in their waste and have been convenient in areas where lands have been burned.

For these solutions to be successful, the researchers recommend strengthening current animal recovery efforts. They also recommend reassessing the legislation, policies and funding to aid the conservation of these animals, many of whose numbers have been reduced by human intervention. They found that as animals become extinct in an ecosystem, their absence could transform habitats from carbon sinks to carbon sources – this makes protecting these species extremely important They also stress that it will be important to work closely with local communities to address the complex social issues that can affect conservation efforts This would involve including the local community into decision-making and governance processes and taking into account their knowledge, values and attitudes toward rewilded species.

This is just the beginning of important research that could help us reduce the impacts of climate change with a very natural solution. Protecting these animals, among many others, and their habitats can help shorten the time needed o reach our climate goals and help us live healthier lives for our populations and the planet.

 

 


 

 

Source Happy Eco News

Unleashing the Power of AI to Protect Coral Reefs

Unleashing the Power of AI to Protect Coral Reefs

Unlocking the Secrets of the Underwater World: Mapping Coral Reefs with AI

Understanding coral reefs’ intricate structure and biodiversity is paramount to their conservation and restoration. Traditional methods of mapping coral reefs can be laborious and limited by the challenges of underwater habitats. Enter machine learning, the cutting-edge technology that can revolutionize coral reef mapping.

Machine learning algorithms can analyze vast amounts of data from diverse sources such as satellite imagery, underwater cameras, and environmental sensors to create high-resolution maps of coral reefs with unprecedented accuracy and detail. These maps provide valuable insights into coral reefs’ health, distribution, and vulnerability, empowering marine scientists, policymakers, and conservation organizations to make informed decisions and prioritize conservation efforts.

Using AI to Protect Coral Reefs: Early Detection and Rapid Response

AI can also play a pivotal role in early detection and rapid response to environmental threats faced by coral reefs. Climate change can cause coral bleaching, disease outbreaks, and species composition shifts; detecting these threats early and responding promptly is critical for effective management.

Real-time data analysis using machine learning algorithms can detect environmental changes that may indicate the onset of stress or bleaching events. For instance, machine learning models can analyze sea surface temperature data, water quality parameters, and other environmental variables to identify areas where corals are at high risk of bleaching. This early warning system enables scientists and managers to take timely action, such as implementing restoration measures, reducing local stressors, or implementing temporary fishing bans to safeguard vulnerable coral populations.

AI can also predict the spread and impact of coral diseases, which can spread rapidly and devastate entire coral reef ecosystems. By analyzing patterns in disease outbreaks, machine learning algorithms can identify potential disease vectors, environmental factors that may promote disease transmission, and the genetic makeup of coral populations that may affect their susceptibility to diseases. This information can aid in developing effective disease management strategies, preventing the further spread of diseases on coral reefs.

Using AI to Help Restore Coral Reefs

Restoring degraded coral reefs is complex and daunting, but machine learning offers innovative and efficient solutions for effective strategies.

One promising application of machine learning in coral reef restoration is the development of predictive models for coral survival and growth. These models can analyze a wide range of factors, such as the type of coral, water quality, temperature, light, and nutrient levels, to predict the optimal conditions for coral survival and growth. This knowledge can inform restoration efforts, such as selecting suitable sites for coral planting, optimizing coral nurseries, and implementing targeted interventions to maximize the success of restoration projects.

Machine learning can also aid in developing sustainable coral reef management strategies. By analyzing data on fishing practices, tourism activities, and other human impacts on coral reefs, it can provide valuable insights for policymakers and stakeholders to develop effective conservation and management plans that ensure the long-term health and resilience of coral reef ecosystems.

The potential of machine learning in enhancing coral reef protection and restoration efforts is immense. From mapping coral reefs with unprecedented accuracy to early detection and rapid response to environmental threats, and from predicting coral survival and growth to informing sustainable management strategies, machine learning is a game-changer in the field of coral reef conservation. As we continue to harness the power of AI and machine learning, we can strive toward a brighter future for these invaluable and highly biodiverse parts of our planet.

 

 


 

 

Source Happy Eco News

Carlsberg ramps up regenerative farming practices across barley supply chain

Carlsberg ramps up regenerative farming practices across barley supply chain

Carlsberg, which is targeting a net-zero value chain by 2040, has confirmed that three of its brands in the UK, Finland and France will source barley from regenerative farming practices.

Last year, the company set a target to ensure that 30% of raw materials are sourced using regenerative agricultural practices by 2030, so that, by 2040 100% of all raw materials are sourced this way. Those targets have since been enshrined in a new zero farming footprint ambition within its recently launched ESG programme.

The Group states that using regenerative farming practices will help farmers promote biodiversity, restore soil health and carbon sequestration, and is therefore an important tool to help combat the climate crisis.

Carlsberg’s senior director of sustainability and ESG Simon Boas Hoffmeyer said: “We cannot reach our targets alone. Partnerships are vital across the value chain, which is why we are collaborating closely with local farmers, traders, maltsters, agronomists and NGOs who provide expertise in the transition to regeneratively grown barley.

“Over time this will allow us to offer our consumers and customers lower-carbon beers and contribute to improving the ecosystems we rely on. We will cooperate with all relevant stakeholders to ensure that we as a company and our industry as a whole, strives towards a ZERO Farming Footprint.”

Progress is already happening. In collaboration with barley malt supplier Soufflet, Carlsberg has used barley that has been cultivated using organic and regenerative agricultural practices. Cover crops were introduced in the barley fields to assist with regenerative farming processes. Soufflet is a key member of the supply chain for the Group’s Kronenbourg 1664 brand.

The aim is that, by 2026, Kronenbourg 1664 Blonde will be brewed with 100% barley malt sourced from this new agricultural value chain, with 250 partner farmers producing 5,000 hectares of responsibly sourced barley that is traceable using blockchain technology, the Group has this week announced.

Now, the company has unveiled two extra new initiatives to build towards its regenerative target.

In the UK, Carlsberg Marston’s Brewing Company (CMBC) has committed to 100% regenerative barley for Carlsberg Danish Pilsner by 2027, and for all UK brands by 2031. The Group has contracted the first 23 farmers to begin work on producing 7,000 tonnes of regenerative barley this year alone.

In Finland, suppliers are producing regenerative barley to Sinebrychoff, a Carlsberg Group company, for its annual KOFF Christmas Beer.

 

 


 

 

Source edie