Search for any green Service

Find green products from around the world in one place

Some Of The Best Ways To Enjoy Nature

Some Of The Best Ways To Enjoy Nature

Some Of The Best Ways To Enjoy Nature

If you are keen to try and enjoy the natural world as much as possible, that’s something that is always going to be possible to achieve. In fact, there are so many ways to enjoy nature and to make this more a part of your life, so that is something that you should absolutely be aware of here. In this post, we are going to take you through some of the best examples of how you might be able to do just that. You should find that the following is all well worth being aware of and trying out for yourself.

 

Grow A Garden

One thing you may want to try your hand at is growing a garden. If you have the space at home to do this, then that is certainly going to be worthwhile, and it’s something that can help you to feel a lot closer to nature and the natural world in no time. There are many ways to approach this. You might grow fruit and veg, or you might just want to have nice perennials and flowering plants. In either case, growing a garden is a great ecological thing to do, and will help you to enjoy the natural world in your own home.

 

Bring Nature Indoors

You might also want to bring the natural world indoors as well. This is something that can make the home a much nicer place to live, as well as strengthening your bond with nature, so it’s a very simple thing that can make a huge difference to your life for sure. It’s a simple case of having some pot plants around the place, and making sure that you care for them properly and fully. If you can do that, it’s going to mean that you are much more able to really enjoy your home and nature in one.

 

Go For Walks Outdoors

You might also want to think about going for some walks in nature. This is a really powerful way to get attuned to the natural world and to feel as though you are part of it, and it’s something that can help you to enjoy yourself so much more on the whole. You might even consider going barefoot for some of it. However, if you want to do that, make sure that you protect your feet as you do so. All in all, walking in nature is a beautiful experience, and one that you can definitely consider.

 

Visit Gardens

There are also a lot of gardens that are available for the public to go and see, and these can be a great way to enjoy nature in a sense. If you want to do this, just take a look online and see if you can find any in your area that you might want to check out. You might be surprised at how many open gardens there are. This is a really simple and fun way to make sure that you are enjoying nature a lot more.

 

 


 

 

Source   Happy Eco News

Hitachi and Imperial College London launch joint venture on climate and nature-based solutions

Hitachi and Imperial College London launch joint venture on climate and nature-based solutions

Imperial will work with Hitachi and Hitachi Europe to establish a joint research centre that will deliver research projects, reports and white papers on the challenges facing the net-zero transition.

The ‘Hitachi-Imperial Centre for Decarbonisation and Natural Climate Solutions’ will explore the potential scenarios and pathways of the net-zero transition, with a focus on carbon management, decarbonising energy and transport and enhancing biodiversity through nature-based solutions.

The Centre will also help train the next generation of scientists and engineers in the field. The collaboration will be delivered by senior representatives from both Imperial and Hitachi, including Professor Mary Ryan from Imperial’s Faculty of Engineering, and Dr Kazuyuki Sugimura, CTO of Hitachi Europe.

Professor Ryan said: “There is greater urgency than ever before to tackle global pollution, of which CO2 is one of the biggest sources. This joint research centre will bring together world-leading scientists and innovators in decarbonisation and climate repair to develop new technology and solutions to the climate emergency.

“Imperial and Hitachi will work closely together to make significant advances in developing cleaner energy and this new centre will accelerate our work towards a zero pollution future.”

Professor Ryan also leads Imperial’s Transition to Zero Pollution initiative, which aims to build new partnerships to help deliver a “sustainable zero pollution future”.

As for Hitachi, the company joined the United Nations Race to Zero Campaign in 2020, was a principal partner of COP26.

Hitachi set a carbon-neutrality goal for 2050 that covers the entire value chain, including production, procurement and the use of products and services. It builds on an existing commitment of making all its offices and factories carbon neutral globally by 2030.

 

Nature-based solutions

There are some key challenges that need to be overcome if nature-based and climate solutions are to roll out at the pace required to help decarbonisation efforts.

Estimates suggest that the current market for offsets will need to grow by at least 15-fold by 2030 and up to 160-fold by 2050, if businesses and nations approach a 1.5C pathway using offsetting to the extent currently planned for. At present, most of the market is accounted for by nature-based projects as the capacity of man-made solutions is smaller. If existing challenges are not addressed, this scaling could bear awful consequences for biodiversity, Indigenous communities and global food security.

Globally, the world is facing an $8.1trn financing gap into nature to help combat the climate crisis and ecological breakdown, according to UN reports that warn that annual investments into nature-based solutions need to increase fourfold by 2050.

The report found that current investment into nature-based solutions sits at $133bn – 0.10% of global GDP – most of which comes from public sources. However, up to $4.1trn is required by 2030, which rises to $8.1trn 2050, a four-fold increase.

Up to $203bn annually is required for forest-based solutions, with peatland and mangrove restoration also highlighted as critical solutions. Marine environment solutions such as seagrass meadows were not covered by the report but will be included in future editions.

The report also estimates that annual investments into these solutions will need to reach $536bn annually by 2050.

 


 

Source Edie

Social forestry project wins the Liveability Challenge 2022

Social forestry project wins the Liveability Challenge 2022

A social forestry project has won the 2022 edition of the Liveability Challenge, a yearly search for ways to tackle the most difficult sustainability challenges faced in Southeast Asia.

Fairventures Social Forestry, a team from Germany, emerged ahead of five other finalists to clinch the grand prize of S$1 million (US$728,000) in funding from Temasek Foundation, the sponsor of the Liveability Challenge and philanthropic arm of Temasek, Singapore’s state-investment company.

This marks the first time in the Challenge’s history that a nature-based solution has won top prize.

This year’s Challenge was themed around decarbonisation, agritechnology as well as nature-based solutions to climate change.

The Fairventures project aims to sustainably manage forests and improve livelihoods in Jambi, Indonesia, using a scalable social forestry model that incorporates blended finance.

Steve Melhuish, impact investor at Planet Rise and one of The Liveability Challenge judges, said: “What we really liked about Fairventures was that it is a true nature-based solution with a proven track record that has helped communities and has had a real carbon impact.”

Melhuish also commended Fairventures for its sustainable business model; it has secured offtakers for its products which include crops, timber and carbon credits.

Lim Hock Chuan, head of programmes, Temasek Foundation, also one of the judges, said: “This is one of the few nature-based solutions ventures that was genuinely end-to-end, with blended finance to make the project sustainable and viable. It also addressed a very big problem: what to do with vast expanses of degraded land in Indonesia.”

 

Tisha Ramadhini (centre) and Paul Schuelle (right) from social forestry venture Fairventures, winner of the 2022 edition of The Liveability Challenge, receiving the prize from judge Lim Hock Chuan, head of programmes, Temasek Foundation. This marks the first time in the Challenge’s history that a nature-based solution has won top prize. Image: Eco-Business

 

The winner was chosen from a field of finalists that included an initiative to curb the energy consumption of data centre through artificial intelligence and digital twin technology by a team from Singapore called Red Dot Analytics, and a large-scale carbon sequestration project by British team CQUESTR8.

Also among the finalists were GAIT, a team from Singapore and New Zealand that measures carbon, and Wasna, a team from Belgium and Singapore that makes low-cost cultivated meat using a universal serum.

The sixth finalist was ImpacFat, a Japan-Singapore team that produces alternative meat products using cell-based fish fat.

Additional prizes of S$50,000 from Quest Ventures went to Fairventures and ImpacFat, S$100,000 from Purpose Venture Capital was awarded to Red Dot Analytics, and S$100,000 from Amasia went to GAIT.

A further S$100,000 from PlanetRise was awarded to Fairventures. Wasna was also given S$100,000 by Silverstrand Capital.

According to an audience poll, Red Dot Analytics was the most popular candidate, followed by GAIT and Wasna.

Last year’s Liveability Challenge winner was SeaChange, a US-based company which produced construction materials like concrete and cement from CO2 dissolved in seawater.

Other past winners include TurtleTreeLabs, a Singapore-based company developing lab-grown milk, and Sophie’s Kitchen, a US-based firm developing sustainable, microalgae-based proteins.

 


 

Source Eco Business

21 circular economy solutions: changing how we eat, live and travel for a more sustainable world

21 circular economy solutions: changing how we eat, live and travel for a more sustainable world
  • In 2019 the global economy consumed over 100 billion tonnes of materials.
  • The Circularity Gap Report highlights how moving to circular economy can reduce consumption levels and help mitigate climate change.
  • These 21 changes to how we make, keep and discard things can build more sustainable systems and a circular economy.

Never before has humankind made and consumed so much stuff. In 2019, for the first time, the global economy consumed over 100 billion tonnes of materials.

Already five of the nine planetary boundaries have been transgressed during humanity’s short presence on Earth, driven by a throwaway culture that too often exploits nature. Our economy has become inherently linear, and it may be difficult to reimagine how we make, use and discard things unless we shift toward a more regenerative and inherently natural system.

 

How can we build a circular economy?

The latest edition of the Circularity Gap Report explores the concept of a circular economy and investigates its role in climate mitigation and in cultivating more equitable societies around the world. Ultimately, the model will require a systems shift: radically rethinking how we use resources to fulfil our needs and wants. The report presents a range of circular solutions, based on four key principles of the circular economy: using fewer resources, using resources for longer, recycling resources and regenerating resources.

The report applies these strategies to “key societal needs and wants” – such as housing, nutrition and transport – to transform how resources are fed into the economy. If applied globally, this could result in a 28% reduction of resource use and greenhouse gas (GHG) emissions of 39% – keeping the world on track to reach its goal of limiting global warming to 1.5 degrees. Here we outline 21 strategies that can be applied in daily life, to businesses and at local and national government level. Importantly, these are not only grounded in energy policies – they go far beyond and span economic policy, industry, business and individual consumer behaviour.

 

Feeding the world and the circular economy

Providing nutrition to the world is an extremely resource and emissions intensive task: accounting for 10 billion tonnes of GHG emissions and 21.3 billion tonnes of resources a year. It’s also extremely inefficient as more than 30% of all food produced is thought to be wasted. While a massive proportion of the global population are malnourished, many others are overweight. Nutrition for all can be delivered with a fraction of the resources currently pumped into the linear food systems. The current model is ripe for change to a circular economy.

 

Build a circular economy through food sufficiency and cutting excess consumption.

 

1. Enough really can be enough

It’s extremely impactful to first slash excessive consumption before increasing production to tackle food shortages and scarcity. The words “no” and “refuse” are important in the circular economy.

2. Put healthier, satiating foods first

Let’s make cutting excess consumption tangible through food sufficiency: bringing the per capita caloric and protein intakes of high-income, high-emitter countries (such as the US or many in the EU, see the Shift profile on the right) down to match healthy levels – 2,000 calories a day for a typical woman. This can be done by reducing the material and emissions footprint per calorie of foods by prioritising healthier and more satiating foods over foods with low nutritional value. Think here of sugary beverages and refined, heavily processed items that require resources and energy to be produced, but their “empty calorie” effect on our stomachs means they are a wildly inefficient diet choice.

3. Embrace a plant-based diet

Animal-based proteins are yet another inefficient way to reach our daily calorie quota: 25kg of grain and about 15,000 litres of water is needed to produce only 1kg of beef – inputs that could instead be used to nourish humans. In some parts of the world, where a variety of other high protein, nutritious options are available, ditching animal proteins can be one of the most impactful individual actions for the climate. Eating a primarily plant-based diet could slash global emissions by 1.32 billion tonnes of carbon dioxide equivalents.

 

The role different countries play in reducing waste and building a systems approach for the circular economy.

 

4. Shop your fridge and cook creatively

Circular shifts will also deliver secondary benefits such as less packaging needed for food – a massive win in terms of reducing single-use plastic – reduced obesity and healthier overall communities. It could also help to reduce food waste, also a strategy in itself needed to make our food systems more circular. Try doing this at home by not only cutting excess consumption, but planning your meals ahead, looking up innovative recipes to make use of your broccoli stems or fruit peels, shopping your refrigerator before heading to the market and skipping impulse buys if possible. Food service can employ the use of AI apps, such as Winnow, which has been found to cut kitchen waste by 50% or more.

5. Check for certifications

Choosing food that is sustainably sourced – meaning it comes from ecosystems that are managed according to environmental standards that enable regeneration – is a strong circular choice. A range of sustainable and carbon-neutral certification schemes aim to provide this ethical stamp to consumers. Nowadays, even cheese can come with a PAS2060 certification, the international mark of carbon neutrality.

 

Eating a primarily plant-based diet could slash global emissions by 1.32 billion tonnes of carbon dioxide equivalents.

—@circleeconomy

 

6. Support local

Sometimes we need to look to the past to learn lessons for the future. Practising the habits of our grandparents by going local and regional when picking our ingredients can have substantial environmental plus points. This often reduces the need for hot-housing vegetables, which equates to a reduction in fuel inputs, plus fewer food miles and lower transportation impacts. Supporting or practising urban, organic and precision farming models can also eliminate harmful synthetic fertiliser use, a huge source of emissions on its own.

In the UK, interest in allotments soared during the COVID-19 pandemic as home-grown food caught on. Lastly, backed by carbon-neutral biomass certification, using food waste and losses as animal feed – instead of the usual soy-based feeds – is an age-old tradition that will support the growth of secondary markets, take a chunk out of livestock emissions and help to avoid deforestation. While it’s not legal in the EU, it’s a successful practice in Japan and South Korea, where about 40% of food waste is used as feed.

7. Cook clean

Finally, cooking with polluting fuels is a silent killer: nearly 4 million people die a year from illness related to the associated pollution. Food preparation resources can also be made more circular, and safe, by replacing polluting traditional biomass and black carbon producing stoves with clean cooking apparatuses, including advanced solar-electric stoves. Increasing access to clean and sustainable energy around the world will be key to making this circular act available to those who most need it.

 

Homes and buildings and the circular economy

Providing shelter for the world is the most intensive “need” in terms of resources and emissions. Buildings are often developed without regard for the ecosystems of which they are a part. And in our civilisation’s history, we have built a lot: the mass of human-made things, from pavements to apartments to phones, now outweighs all natural biomass, such as trees and animals. Using circular economy strategies to lessen the load of our housing needs on the environment, and building with (rather than over) nature is imperative. Fulfilling the global economy’s need for housing is currently responsible for nearly 40 billion tonnes of resources and 13.5 billion tonnes of GHG emissions a year.

 

Multi-purpose buildings reduce the overall floor space needed and optimise resource efficiency, and also deliver proportional savings on heating and cooling.

—@circleeconomy

 

8. Design flexible, multi-purpose homes

To make our need for housing circular, we must ultimately call for fewer, but better, new houses to be built and make using them for multiple purposes the norm, especially in higher-income countries where we have masses of stock already built up. To make the most of the buildings we already have, they should be used flexibly and be able to adapt as time and needs evolve. Imagine a hybrid building that is used as a flex-work office space, a community centre and an evening school. Such spaces can be payment-per-use, such as the cross-industry collaborative building Dutch Mountains in Eindhoven, the Netherlands. Multi-purpose buildings reduce the overall floor space needed and optimise resource efficiency, and also deliver proportional savings on heating and cooling. These savings will be further boosted by cuts in energy consumption that can be practised by anyone: lower room temperatures, smart metering and improved thermal insulation.

9. Use existing homes for longer

To continue making the most of the buildings already gracing the Earth, we must prioritise extending the lifetime of existing stock. Up until the 1960s there were strong traditions of reusing and sorting building materials, but this began to change as the construction industry in Europe moved from lime mortar to cement mortar, building materials became cheaper, and there were fewer requirements regarding the service life of buildings. Supporting and urging government interventions that ban building with virgin materials and policies to cap new construction in line with available volumes of secondary materials for building can reduce the need to extract finite materials from the Earth. Ultimately, waste from demolished buildings can be processed into new building materials, such as concrete mix or building sand. These options massively boost resource efficiency in production and performance.

10. No building left behind – or empty

Core circular methods must be practised at all levels, from the consumer to the national government. These include renovation, refurbishment, retrofitting and modular design. Modular design allows us to easily adapt buildings over time to suit changing needs and carries the potential for deconstruction, relocation and reuse of elements (or even whole buildings). Underused and disused buildings should also be occupied – in a time of resource scarcity buildings should not be sitting empty. Only with these methods can we try to meet the global housing demand within our global stock limits.

11. Nature-based solutions and renewable technologies

Nature-based solutions (NBS) can also lower material and energy demand for housing. We can be inspired by low-energy approaches such as Passivhaus design (this minimises the requirements for mechanical space heating, cooling and ventilation), while also applying renewable technologies such as solar photovoltaic or thermal, air-source and geothermal heat pumps to shrink the carbon footprint of a property. The Mahali Hub in South Africa are modular homes built with upcycled and locally available materials and a range of sustainable additions such as rainwater harvesting and passive cooling, resulting in net-zero homes.

We need to see the widespread use of low-carbon construction materials, material lightweighting and local sourcing to help to cut embodied energy in the housing system. And to add some regenerative power, the use of natural or renewable building materials, such as wood, straw and hemp, can boost biodiversity and regenerate ecosystems, while also generally slashing material footprints due to their lightweight character. Green roofs and living walls are all examples of NBS interventions with regenerative benefits, at least in terms of thermal performance, water management, biodiversity and air quality.

 

To dive into these 21 circular solutions that can bring us back on a 1.5 degree pathway, and understand the key role local and national governments and businesses play in driving the circular transition, download the Circularity Gap Report 2022.

 

Consuming and producing goods and the circular economy

Fulfilling the societal need for consumables – a diverse group of items ranging from refrigerators and furniture to clothing and cleaning agents – is not hugely resource-intensive compared to housing, for example, at 6.9 billion tonnes of resources and 5.6 billion tonnes of GHG a year. However, it’s incredibly wasteful, toxic and it is a huge drain on a different set of resources: cotton, synthetic, fossil fuel-based materials such as polyester and all the dye pigments and chemicals that go with it.

The production of low-cost, synthetic materials, which form the backbone of cheap, fast fashion, has increased nine-fold in the past 50 years, using around 350 million barrels of oil each year and shedding microplastics in the process. Meanwhile, the fashion industry is responsible for a fifth of waste water globally. That’s why we must move towards a circular economy.

 

Shifting consumption choices and mainstreaming circular design, both usage and acquisition rates can decline.

—@circleeconomy

 

12. Make careful consumer choices

As we know by now, we need to begin by using less. Aside from conscious choices and utilising the all-important r-word – refuse – we need to start with the efficient design and use of consumer products. By shifting consumption choices and mainstreaming circular design, both usage and acquisition rates can decline. Tangible actions include: increasing digitisation to reduce paper use; not making textiles from animals; aiming to eradicate single-use plastic; optimising the usage of electronics to minimise e-waste; choosing only eco-labelled responsibly-sourced timber furniture, and prioritising local purchasing and sourcing.

13. Get repairing and sharing

We must also learn to make the most of the stuff we have. Here, encouraging repair, maintenance, sharing, re-manufacturing and take-back programmes for textiles, appliances, furniture and machinery are powerful and should form the base of circular systems. Durable denim meets circular business models in the case of Kuyichi: the company’s resale business model offers a take-back scheme for customers to easily give their denim a new lease of life to their denim, as well as a resale service for preloved goods.

14. Support ‘right to repair’

The backwards practice of designing products to break relatively quickly, planned or built-in obsolescence, must be eliminated, or we should choose not to invest in the companies that fail to do so. A phone with an old battery should not have to be tossed out and replaced, but should instead be repaired, the battery replaced easily with available and value-for-money replacement parts. Design for disassembly, customisation and replacement parts are all practical and marketable options that should become mainstream. The EU has no dedicated policy in place to stop the absurd practice of planned obsolescence, yet, Biden in the US has taken a bold and necessary step in formally backing “right to repair” legislation that calls on companies to release the knowledge and tools required to repair many common devices.

15. Consider chemicals

To reduce the level of toxins and pollutants in the environment, we should prioritise the use of sustainable materials for chemical-free consumables. This is imperative in light of recent research that posits that the fifth planetary boundary to be surpassed is chemical pollution – spurred by plastics and chemicals from farmland fertilisers, for example, leaching into the environment. We use products and dispose of them, but they don’t just go away. To avoid further environmental degradation, businesses and consumers alike can prioritise bio-based alternatives, chemicals leasing and natural fertilisers, and organic compost in gardens.

16. Recycle and help build secondary markets

We can also look to recycle our consumables when refusing, repairing or refurbishing are not possible avenues. Closing loops and boosting value in secondary markets will allow a circular market for consumables to thrive. To get there, governments must promote the recycling of plastics, synthetic fibres, paper, wood and wood by-products; as well as specifying recycled content obligations, and substituting them where possible for virgin or raw material. On the plastics front, a range of legislation in this arena has been rolled out: by 2030, all plastic bottles in the EU must contain 30% recycled content, while this stands at 50% in California; and in Maharashtra in India, industrial packaging produced in the state must include 20% recycled content. All steps in the right direction, but this has got to move faster, while concurrently turning off the plastics tap by reducing unnecessary plastics production. If applied globally, this could cut 1.23 billion tonnes of greenhouse gas emissions and save 2.18 billion tonnes of materials, according to the Circularity Gap Report 2022.

 

Mobility, travel and the circular economy

Mobility systems in their current form are responsible for 8.7 billion tonnes of resources and 17.1 billion tonnes of GHG emissions a year – coming in second only to housing. With its mammoth footprint and contribution to air pollution worldwide, mobility is commonly associated with GHG emissions reduction in the minds of both policymakers and the public.

Current mobility habits leave much to be desired. Privately owned vehicles in Europe sit unused for 90% of the time, while the phenomenon of “ghost flights” recently shocked the world: airlines flying empty planes just to retain flight slots, all the while spewing GHG emissions. From driving to flying, opportunities for change are plentiful as we look towards a circular economy.

 

We can learn a lot from the behaviours practiced during the COVID-19 lockdowns – namely a cut in long-distance travel and telecommuting for work.

—@circleeconomy

 

17. Travel less often

When it comes to cutting the resource and emissions intensity of mobility, the simplest way is to reduce travel. We can learn a lot from the behaviours practiced during the COVID-19 lockdowns – namely a cut in long-distance travel and telecommuting for work. Post-pandemic, these environmentally friendly behaviours can continue to be encouraged through a range of interventions.

The provision of regional and local hubs – the so-called 15-minute city being piloted in both Paris, the US and China, for example – allows residents to reach amenities within 15 minutes, either by foot, bike or public transport. Shared and virtual offices, telecommuting and working from home when possible can continue to be promoted by employers, especially as many companies acknowledge that staff productivity was maintained.

18. Go for lightweight designs

Vehicle design improvements are another more incremental way to reduce the level of materials used in mobility. Lightweight and smaller vehicles, such as cars and scooters, result in less steel and aluminium used for production, as well as lower fuel consumption and embodied energy.

19. Keep your car for longer

When it comes to prioritising durable design and material selection, plus optimising repairability and maximising maintenance, we can also use materials for longer – extending the lifetime of vehicles.

20. Share when you can

As well as better designed vehicles, better utilisation of all vehicles will further reduce the intensity of this societal need. With personal vehicle ownership no longer the dream it once was, interventions include shared mobility, via car clubs and pools, ride-sharing, and public transport, with park-and-ride provision to cut fuel consumption.

21. Design for reuse

Finally, optimising end-of-life vehicle management is critical to cycle flows, with the recycling of metal and plastic components, and the use of recycled materials, on the rise.

To dive into these 21 circular solutions that can bring us back on a 1.5 degree pathway, and understand the key role local and national governments and businesses play in driving the circular transition, download the Circularity Gap Report 2022.

 


 

Source WeForum

Asian companies claim they are going net-zero — but are their targets realistic, ambitious or greenwash?

Asian companies claim they are going net-zero — but are their targets realistic, ambitious or greenwash?

The race is on for the business world to figure out how to sustain economic growth and go carbon-free.

The penny seems to be dropping that avoiding climate action comes with financial risks. Last October, 200 of the world’s largest multinational companies said they would achieve net-zero carbon emissions by 2050. Among them were Asian companies in sin industries linked with spotty environmental records such as Sinopec and Asia Pacific Resources International Limited (APRIL). Chevron, Philip Morris and DuPont were also among those that made pledges.

By 2050, climate change will shrink the global economy by 3 per cent as drought, flooding, crop failure and infrastructure damage become more severe — unless drastic action is taken to bend the curve on global warming, according to a report by the Economist Intelligence Unit.

The Covid-19 pandemic — which has been called a “dress rehearsal” for climate change — has accelerated the urgency to mitigate the impacts of climate change which cost the global economy billions every year.

“Suddenly, corporates have realised that if we’re going for a 1.5 degrees Celsius cap on global warming [the goal of the Paris Agreement on climate change], we have to hit net zero by 2030. It’ll be very expensive to decarbonise any later,” said Malavika Bambawale, Asia Pacific head of sustainability solutions at Engie Impact, a decarbonisation consultancy.

 

“What is the cost of not decarbonising? That is the question businesses should really be asking themselves.”
Pratima Divgi, director, Hong Kong, Asean, Oceania, CDP

 

Western businesses have led the way, with the likes of Microsoft saying it will make “the biggest commitment in our history” by removing all of the carbon it has put into the atmosphere since its founding in 1975. Asian companies have been slower to commit. “A lot of Asian companies are further down the supply chain, so they can hide for longer,” says Bambawale.

But climate action in a region that produces more than half of global emissions is cranking up. Of the 1,200 or so firms that have signed up to the Science-Based Targets initiative (SBTi), which helps companies cut their emissions in line with the Paris Agreement, 250 Asian companies have set carbon-cutting targets or are in the process of getting targets approved — a 57 per cent increase between 2019 and 2020. Forty-eight of those 250 firms have aligned their business models with the Paris agreement. 

“From a small base, corporate decarbonisation is growing in Asia Pacific,” says Pratima Divgi, Hong Kong, Southeast Asia, Australia and New Zealand director at CDP, a carbon disclosure non-proft that co-developed the SBTi. Companies that have signed up to the SBTi include Hong Kong real estate firm Swire Properties, Chinese computer giant Lenovo, and Malaysian textile firm Tai Wah Garments Industry.

National-level policy commitments, like China, Korea and Japan’s net-zero declarations over the past six months have set the tone for Asian corporate decarbonisation. Competition is helping. Australian supermarket chain Coles declared a 2050 net zero target six months after rival Woolworths did the same, and Singaporean real estate firm City Developments Limited (CDL) made a net zero pledge the week after competitor Frasers Property. Gojek and Grab are racing to be the first ride-hailing app in Southeast Asia to declare a decarbonisation target.

“Now that market leaders such as CDL have made net-zero commitments, it will be harder for their competitors to sit and wait,” says Bambawale.

Malaysian oil and gas giant Petronas announced in October that it would hit net-zero by 2050, a month after PetroChina, the region’s largest oil company, said it would be “near-zero” by mid-century.

 

Aspiration versus reality

But questions hang over how Asia’s big-polluters will realise their declared targets. Ensuring the big emitters share detailed plans and a budget to support their carbon neutral declarations is key for accountability.

PetroChina’s announcement came with “frustratingly little detail”, commented renewables consultancy Wood MacKenzie. The oil giant aims to spend just 1-2 per cent of its total budget on renewable energy between now and 2025. This compares to Italian oil major Eni’s planned 20 per cent of total spend on renewables by 2023 and BP’s 33 per cent by 2030.

Petronas’ own 2050 net-zero pledge is an “aspiration” and not a science-based target that aligns the firm with the Paris Agreement.

“Aspirational targets can only go so far — science-based targets also need to clearly allocate interim short- to medium-term targets to work out what this transformation means to your business and value chain,” says Divgi.

Setting a science-based carbon reduction target takes time. Singapore-based transport firm ComfortDelGro has given itself two years to set science-based goals, but the company avoided giving a carbon reduction timeline in its announcement earlier this month.

Other companies are also being selective with the information they make public. This could be because they do not want to reveal the extent to which they intend on decarbonising, or because they do not have a plan yet. CDL has pledged that it will be net-zero by 2030 — 20 years ahead of competitor Frasers Property — but has declined to give further detail on how it will meet this target.

CDL’s carbon commitment is limited to its wholly-owned assets and developments under its direct control, while Frasers Property is aiming to remove emissions from its entire value chain.

 

Why carbon dieting is difficult

For major emitters like oil and gas firms, decarbonising means transforming their business model without going out of business. Petronas told Eco-Business that meeting its 2050 target “won’t be easy”, and would require the company to “re-strategise how we do our business, with the focus no longer being on profitability or production capacity alone”.

Petronas plans include hydrocarbon flaring and venting, developing low and zero carbon fuels, capturing emissions and investing in nature-based solutions. It also plans to cap emissions to 49.5 million tonnes of carbon dioxide-equivalent for its Malaysia operations by 2024, and increase renewable energy capacity to 3,000 megawatts by the same year.

Meeting its target would “requires us to strike an equitable balance between providing low carbon solutions while still ensuring energy security and business profitability,” said the company’s group health, safety, security and environment vice-president, Dzafri Sham Ahmad.

But removing the carbon from a company’s operations is no longer deemed enough. The indirect emissions that occur in the entire value chain — known as scope 3 emissions — are becoming the new business imperative. A new report from CDP found that emissions from a company’s supply chain are on average 11.4 times higher than its operational emissions – double previous estimates. ExxonMobil’s scope 3 emissions from the use of its products exceed the national annual emissions of Canada, it was revealed in January.

 

“Achieving this aspiration will require us to re-strategise how we do our business, with the focus no longer being on profitability or production capacity alone.”

Dzafri Sham Ahmad, vice-president, group health, safety, security and environment, Petronas

 

Electric vehicle makers such as Telsa are now asking questions about the emissions of their nickel suppliers while computer giant Apple wants to source low-carbon semiconductor chips. But tackling scope 3 emissions is tricky. For instance, how do Singapore construction companies reduce the imported carbon of building materials sourced from China, where electricity is generated from coal? And how does a building owner persuade its tenants to turn down the air-conditioning?

“Reducing scope 3 emissions looks easy enough from the top down. But for people in the field operating the assets it can be a nightmare,” says J. Sarvaiya, an engineer who’s an expert in decarbonisation.

Balancing the carbon books by sourcing renewable energy is also difficult in a region where fossil fuels are still the dominant power source, and where a diversity of regulatory landscapes has made scaling renewables hard and where prices remain high in places. This has led Asian companies to focus on reducing energy consumption first, before looking at procuring renewables, notes Bambawale.

But energy capping is not easy in a high-growth region with escalating energy needs. Southeast Asia’s energy consumption is growing by 4 per cent a year — twice the rate of the rest of the world — and much of that demand comes through cooling as global temperatures rise. Some 30 per cent of a business’s energy bill in this region goes on cooling, says Bambawale.

 

Offset or cut?

Facing so many challenges, it’s tempting for businesses to buy their way to net-zero. Carbon offsets, where companies fund projects that capture or store greenhouse gas emissions to offset their own, are becoming an increasingly popular path to carbon neutrality. Singapore state investor Temasek was one of Asia’s first companies to neutralise the carbon emissions of its operations last year, and did so primarily by buying carbon offsets. Petronas is also relying on offsets as part of its ‘measure, reduce, offset’ net-zero drive.

But offsets are drawing growing scepticism because they enable businesses to carry on as usual, without reducing their actual footprint. “Many companies find that it’s cheaper to reach net-zero by purchasing offsets. It may cost more to replace old technology with more efficient kit than buying offsets,” says Sarvaiya.

Offsets are a necessary piece of the decarbonisation puzzle — but the quality of offset is key, says Bambawale. Companies should ensure that an offset is additional—that is, the carbon reduction would not have happened without the company’s effort. It should also have permanent, rather than temporary, impact. And it should not cause any sort of environmental or social harm. Proving all of that is difficult. “Companies could spend years checking and validating that an offset is actually happening,” says Bambawale.

Offsets will get more problematic the warmer the world gets, Sarvaiya points out. The ability of plants to absorb carbon declines in a warmer world, so more trees will have to be planted to balance the carbon books. Buying renewable energy faces a similar issue. Every one degree increase of surface temperature reduces the efficiency of solar panels by 0.5 per cent.

Companies are also looking to emerging technologies to help them hit carbon goals. In Singapore, concrete producer Pan-United and Keppel Data Centres are part of a consortium that is banking on carbon capture, use and storage technology that won’t be online for another five to 10 years to reduce the carbon impact of the city-state’s oil refining, petrochemicals and chemicals sectors.

Heavy-emitting sectors such as steel production, aviation and shipping have high hopes for hydrogen power, which is considered the missing piece of the renewables puzzle. But questions over cost and transportation make hydrogen a fuel for the future for now. “Moonshot ideas should be the last step,” says Bambawale.

 

Why net-zero is not just hot air

In Southeast Asia, where governments have shown little interest in decarbonising their economies in their post-pandemic recovery plans, there is less incentive for businesses to cut their carbon footprints amid the struggle to stay afloat.

But a wave of commitments to decarbonisation in the past 18 months will likely lead to more. Scores of businesses have signed up for science-based targets during the pandemic, which has played a part in pushing others towards net-zero, says Divgi, adding that a Southeast Asian bank recently committed to SBTi whose suppliers’ emissions were 400 times its own.

Another indicator of interest in corporate climate action is the Task Force on Climate-Related Financial Disclosures (TCFD), a global framework for companies to disclose the financial risks they face from climate change. CDP has seen a 20 per cent increase in TCFD disclosures in Asia over the last year, Divgi notes.

More companies are trying to assess the financial implications of the transition to a low-carbon economy, and the more progressive companies have recognised that calculating climate risk is not a reporting exercise, it’s a strategic one, says Divgi.

“We’re not saying that it [decarbonising] is without problems. There’s a huge level of transformation involved, but climate change presents both a financial and an existential challenge for many businesses,” she says.

“What is the cost of not decarbonising — that is the question that businesses should really be asking themselves.”

 


 

By Robin Hicks

Source Eco Business