Search for any green Service

Find green products from around the world in one place

4 Stepping Stones to Sustainability for New Construction Firms

4 Stepping Stones to Sustainability for New Construction Firms

4 Stepping Stones to Sustainability for New Construction Firms

The construction industry has a well-deserved reputation for being an environmental polluter. It has gotten away with ungreen practices because the other sectors are just as dirty, if not more. However, climate change has made the world less tolerant of environmentally unsound organizations. Governments have joined the sustainability movement, so the writing is on the wall for maladaptive enterprises.

Many firms are slow to adopt greener practices, but the influx of startups can accelerate the sector’s sustainability transformation. New design-build firms, general contracting businesses, and subcontractors are better positioned to embrace eco-friendly initiatives.

The corporate culture is still a blank canvas, so start fresh with these four tips.

 

  1. Go Digital

Technological adoption and sustainability go hand in hand. Outdated methods and crude tools limit your ability to overcome your blind spots and find opportunities to operate more sustainably. Investing in digital technologies is necessary to address your pain points and streamline your processes.

Which innovations should you prioritize? There are numerous excellent candidates:

  • Mobile devices and messaging tools can harness cloud computing’s potential to promote remote resource access and foster interconnectedness. The interplay between these technologies will break down the usual communication barriers, making it easy to keep everybody on the same page.
  • Computer-aided design, building information modeling, and construction management programs streamline processes. They have unique functions but digitize data so you can review information more granularly. Analytics programs can reveal insights to solve problems that harm the environment, like surplus inventory and rework.
  • LiDAR and camera-equipped drones, wearable Internet of Things devices, and telematics systems can collect data on almost anything. They can help you precisely and accurately scan the landscape to minimize disturbance on existing ecosystems, quantify worker performance to identify and correct wasteful habits and keep tabs on equipment usage.
  • Bots automate tedious tasks, allowing you to conduct construction work more efficiently. Robotic arm 3D printers and bricklayers can help you complete projects faster and decrease material waste.

Construction has been slow to innovate primarily due to employee hesitance. Feeling intimidated by innovative solutions and receiving inadequate technical support are some of the usual baggage crews carry. Budget for training and continuous learning, as technologically savvy workers feel comfortable with innovations and can maximize their tools to run your business more sustainably.

 

  1. Be Circular

Circularity promotes using renewable, reclaimed or recycled materials, reusing or repurposing items, recovering salvageable materials, and designing structures with easily recoverable components. Such practices aim to leave the remaining virgin resources untouched because logging, mining and quarrying have considerable environmental consequences. These extraction methods destroy natural habitats, displace wildlife, eradicate biodiversity, pollute soil, water and air, and reduce natural carbon sinks.

Considering the planet’s finite resources, the construction industry has to switch from the linear to the circular model sooner rather than later. Otherwise, the sector will face crippling supply chain disruptions, which can result in project delays and loss of profits. How do you join the circular economy?

  • Buy reclaimed, recycled and repurposed construction supplies: Try doing so whenever you can to help conserve virgin resources.
  • Choose vendors carefully: Circular suppliers engaging in unethical practices practice greenwashing, not sustainability. Exercise due diligence to ensure your supply chain partners are as green as they claim to be to avoid enriching environmentally damaging businesses.
  • Select used equipment over new products: Purchasing pre-owned tools, machines and vehicles is sustainable because they’re already around. Ordering brand-new assets incentivizes manufacturers to build more products, potentially using newly extracted raw materials. Plus, pre-owned models save you money because used items cost less, less downtime is necessary for training and replacement parts are usually cheaper.
  • Put a premium on prefabrication: Prefab construction minimizes waste since it’s easier to control material usage when building components off-site in a factory-controlled environment. More importantly, construction modules lend themselves to deconstruction, simplifying dismantling and material recovery for reuse or resale.

 

  1. Emit Less

Decarbonize your operations at every turn. Switching from diesel to electric is one of the best ways to do so. Powering your assets with nothing but electricity eliminates air and noise pollution on-site.

Running on electricity doesn’t automatically translate to fewer greenhouse gas emissions. In 2023, fossil fuels produced 60% of the electricity generated in the United States. The nation’s power mix will be cleaner once green hydrogen becomes ubiquitous, so operating electric construction assets will be even more eco-friendly in the future.

If upgrading to electric equipment doesn’t make sense for you, adopting renewable diesel is the next best thing. This alternative fuel is chemically identical to fossil-derived diesel, so you can use it on your existing assets without modifying anything. Renewable diesel releases fewer climate change gasses because it burns cleaner.

Furthermore, localize your supply chain. Ships are responsible for 3% of all greenhouse gasses linked to human activities globally. Ordering materials from overseas will increase your construction firm’s carbon footprint, but transporting domestically sourced materials involves fewer emissions. It’s also logically simple because they cover less ground and avoid Customs and Border Protection. As a bonus, you enjoy shorter lead times.

Make it a mission to have a lean mindset. A lean construction philosophy aims to cut waste at every chance, minimizing idle time and redundant processes that drive up greenhouse gas emissions.

 

  1. Look Ahead

Sustainability isn’t an objective — it’s a purpose. It’s a never-ending pursuit, so always seek new ways to run your construction firm in an environmentally friendly way.

Lack of knowledge about emerging technologies is among the limiting factors in innovating. Curiosity is the antidote to ignorance, so keep up with the hottest trends in eco-building. Transparent wood, superabsorbent hydrogel, luminescent cement, 3D-printed soil structures, biodegradable polyurethane foam and plasma rock are some of the most promising innovations.

Most promising eco-friendly construction solutions take a lot of development before becoming ready for sale — and only a few ultimately gain mainstream acceptance. Although many ingenious ideas don’t pan out, be ahead of the curve. Use them to inspire regenerative and climate-resilient building designs that positively impact the environment for decades.

 

Take Small Steps Toward Sustainability

These four strategies only scratch the surface of what you do to be a force for good in the sector’s sustainability transformation. Strive to be more eco-friendly as you grow and you’ll establish a solid reputation as a green construction business.

 

 


 

 

Source   Happy Eco News 

Recycle Plastic Bags into Oil with New Machine

Recycle Plastic Bags into Oil with New Machine

A Japanese inventor learned how to recycle plastic bags into oil with a new machine.

A Japanese inventor has designed an innovative machine that can recycle plastic bags into oil. 70-year old Akinori Ito created the recycling device to process hard-to-recycle plastic waste into usable fuel.

Ito’s machine shreds plastic bags into flakes and then melts them at high heat, producing an oil liquid similar to light crude. The unconventional recycling method aims to reduce waste while generating income for local communities. The machines come in a variety of sizes, from desktop-sized to community-scale.

“I don’t want this equipment to just be used by major companies. I want it to be used in small towns and villages,” Ito shared.

His compact recycling unit measures around 4.5 meters long by 2.5 meters wide with various control stations. Up to 1 kilogram of plastic bags can be loaded into the shredder per hour.

The shredded plastic is then fed into a hot furnace, melting the material at temperatures up to 430 degrees Celsius. The intense heat decomposes the hydrocarbons and will recycle plastic bags into oil.

Different grades of fuel oil can be created depending on the temperature and components used. Higher heat produces lighter oils akin to diesel or gasoline. The oil can then be sold to buyers as recycled petroleum products.

Japan generates over 9 million tons of plastic waste annually but recycles only 22% of it, government statistics report. The country imports much of its energy and previously recycled most plastics into lower-grade uses like concrete filler. The ability to recycle plastic bags into oil is something that Japan needs.

Motivated by both the waste and energy issues, Ito spent over 20 years perfecting a system to upcycle plastics into usable crude oil.

After testing various methods, the retired electronics engineer pioneered the pressurized hot furnace technique to recycle plastic bags into oil.

“I didn’t expect oil made from plastic bags would be such good quality when I first produced it,” shared Ito. “The quality of oil is high enough to be sold to consumers.”

By selling the oil produced, local groups and municipalities can fund new recycling efforts in a self-sustaining loop. “I hope more people will use the machine in their community,” said Ito.

Several Japanese municipalities have already installed Ito’s invention to process hard-to-recycle plastic films, bags, wrappings, and other waste into oil.

The city of Akita estimates they can convert several hundred kilograms of plastic waste per day into nearly $500 worth of oil. Some groups report producing over 80 liters of oil daily.

But challenges remain in scaling up the niche recycling concept. Collecting sufficient plastic volumes is difficult in smaller towns. Removing ink and labels from plastic bags is an added step. The systems also require maintenance of technical equipment.

Still, supporters believe Ito’s invention provides an important outlet to reduce unrecyclable plastics piling up in Japan and other countries. His machine offers a rare solution for polyethylene films that lack recycling markets globally.

If expanded, systems that recycle plastic bags into oil could reduce environmental and crude oil imports for countries while generating income. With further development, experts envision entire localized supply chains optimizing the plastic-to-fuel concept.

For his innovation, Ito was awarded the Medal of Honor from Japan’s Ministry of Environment in 2018. His persistence in creating a real-world solution also highlights the power of grassroots initiatives to spur change.

Said Ito: “I don’t want my technology to end up sitting on the shelf. I want it to be used practically to help communities.”

 

 


 

 

Source   Happy Eco News

The Importance of Whale Poop to Maintain Healthy Oceans

The Importance of Whale Poop to Maintain Healthy Oceans

The importance of whale poop to maintain healthy oceans

Here are some fun facts about whales that I bet you didn’t know. There are two main groups of whales: baleen whales (which include humpbacks and blue whales) and toothed whales (which include orcas, belugas and sperm whales). The difference? One has teeth, and the other has fibrous ‘baleen’ plates. Another fun fact is that the Antarctic blue whale is the largest animal on the planet, weighing up to 200 tons and reaching up to 30 metres in length. These big blue whales can consume about 3600 kg of krill daily.

What I bet you didn’t know is how important whales and their poop are in sustaining marine life and minimizing the impacts of climate change. The ocean is full of whale poop which floats on the uppermost layer of the ocean’s water. Although whales will feed in deeper waters, they will poop when they swim up to the surface to breathe. Whale poop can help with the growth of phytoplankton, the tiny plants that are the foundation of the aquatic food web. Small fish and invertebrates will eat the plant-like organisms, and then the smaller animals are eaten by bigger ones.

The phytoplankton not only contribute at least 50 percent of the world’s oxygen, but they do so by capturing more than 37 billion metric tons of carbon dioxide produced. When the phytoplankton die, the carbon they captured will sink into the deep ocean, where it won’t return to the surface for thousands of years. Unfortunately, with the rise in ocean temperatures, an increase in pollution and the rise of microplastics found in the ocean, phytoplankton levels are dropping in certain parts of the world.

How do whales contribute to nutrient recycling, help to maintain healthy oceans and even increase phytoplankton levels? The process is called the “whale pump”. Whale’s poop contains nutrients such as nitrogen, phosphorus and iron, which phytoplankton need to grow. Whales benefit the entire ocean ecosystem by creating conditions encouraging fish populations to grow.

University of Alaska Southeast researchers are testing this relationship between whale poop and climate change. They are testing whale poop and comparing, in a lab, how well phytoplankton grows in different types of feces compared with plain seawater.

To date, they have tested whale poop samples from humpbacks, harbour porpoises and grey whales and found that there was more growth in some conditions that contained whale poop. With climate change intensifying and the physical and chemical characteristics of the ocean changing, the whale pump may become even more important for bringing nutrients up from the deep.

Unfortunately, many species of whales (including the blue whale, vaquitas, the grey whale, etc.) from around the world are at risk of disappearing. Some things impacting whale populations include ship strikes, bycatch (whales being trapped in fishing nets), habitat degradation and climate change. Conservation efforts, such as international agreements, marine protected areas, and efforts to reduce entanglement in fishing gear, are helping to protect and recover some whale species.

This isn’t the first time we’ve seen the impact animal poop can have on climate change. Elephant dung, which sometimes has seeds in it, is helping to grow trees and restore the forest’s role as climate sinks. Whale poop has a very similar impact. It not only helps feed the entire marine ecosystem but also significantly contributes to maintaining the ocean’s role as a carbon sink. Without whales pooping in our oceans, the health and balance of the ocean’s ecosystems will be compromised. We need the oceans, the whales, and the phytoplankton to help fight against the challenges of climate change.

 

 


 

 

Source   Happy Eco News

ECONYL Sustainable Nylon Alternative

ECONYL Sustainable Nylon Alternative

Nylon is the stretchy material found in underwear, hosiery, activewear, swimwear, and even umbrellas. It was the first fabric to be made in a laboratory. Nylon is made out of crude oil and is very energy-intensive to produce. Producing nylon creates nitrous oxide, which is 300 times more potent than carbon dioxide. Large amounts of water are needed to cool the fibres along with lubricants, which can become a source of contamination. Moreover, nylon is not biodegradable. If it makes its way into the oceans, it will degrade to thin fibres and small particles that wildlife can digest.

Many designers and fashion brands want to use a sustainable nylon alternative in their garments, but it is difficult to find them. One new sustainable nylon alternative is called ECONYL, a trademark of the Italian plastics company Aquafil. Sustainable nylon alternative ECONYL is made up of nylon waste, including fishing nets, fabric scraps, carpet flooring, and industrial plastic. The nylon waste is recovered and converted into new yarn. This regenerated nylon can be recycled, recreated, and remoulded repeatedly. ECONYL is chemically identical to nylon 6, which means it has the same characteristics as traditional nylon and can be used in the same ways.

The ECONYL Regenerative System happens in four steps.

  1. They rescue waste like fishing nets, fabric scraps, and industrial plastic from all over the world. The waste is sorted and cleaned to recover all of the nylon possible.
  1. Through radical regeneration and purification, the recovered nylon is recycled back to its original purity, allowing the quality of ECONYL to reflect that of fossil-based nylon.
  1. The recycled nylon is processed into new yarns and polymers for fashion and industrial brands.
  1. These brands can use ECONYL to create new products. Once the products containing ECONYL are no longer useful to customers, they can return and be regenerated again.

According to the ECONYL website, for every 10,000 tons of ECONYL raw material produced, they can save 70,000 barrels of cruise oils and over 65,000 tonnes of carbon dioxide emissions. Switching to sustainable nylon alternative ECONYL also reduces the global warming impact of nylon by up to 90% compared with the material from oil.

Using abandoned fishing nets to make ECONYL helps to clean up the oceans and helps reduce the risk of marine animals getting entangled by abandoned nets. ECNOYL has teamed up with many take-back organizations to collect the materials used in creating their regenerative nylon. They have two carpet facilities in the US where they collect nylon 6. They also work with the Healthy Seas Foundation to collect recovered fishing nets.

ECONYL has teamed up with over 100 brands (many are swimwear and activewear brands) to include this sustainable nylon alternative in their products. Gucci, for example, launched its own recycling program to convert textile scraps into new ECONYL yarn. Gucci has also used ECONYL to create sustainable nylon alternative handbags. In 2023, Stella McCartney launched its first-ever close-the-loop garment, a parka made from ECONYL that is designed to be returned and regenerated into new yarn at its end-of-life. Adidas has been known to incorporate ECONYL into some of their swimwear designs.

We are also seeing ECONYL used in interior brands like Pottery Barn to make rugs and car brands like BMW and Mercedez-Benz to produce their car floor mats. BMW also uses ECONYL in various interior trims, such as seat covers, door panels, and dashboard components.

As more brands begin to use ECONYL in their designs, we may eventually see a phase-out of traditional, fossil-fuel nylon. This sustainable switch will help the design and fashion industries become greener, our oceans cleaner, and help to create bigger importance on recycling and regenerating used materials.

 

 


 

 

Source  Happy Eco News

M&S switches from plastic bags for life to paper options

M&S switches from plastic bags for life to paper options

The new bags have been rolled out to all M&S Stores with a food department across the UK. They are made using an FSC-certified paper and, according to M&S, are capable of carrying more than 15kg.

A natural resin is applied to the bags to enhance water resistance without rendering them hard-to-recycle.  Customers are being encouraged to use the bags multiple times before recycling at home and M&S claims this offers a convenience benefit, as plastic bags are not collected from homes and need to be taken to supermarkets with soft plastic collection points.

M&S’s director of corporate affairs Victoria McKenzie-Gould said “the vast majority” of customers –  more than 70% – already bring their own bags.

“But, on the odd occasion when we all need to reach for one more bag, we’re pleased to be offering a more sustainable option for customers,” she said.

A smaller and less robust paper bag will be added to M&S’s clothing and home departments. Like the food bag, it will be made using FSC-certified paper and be coated with a recyclable natural resin.

The switch means that M&S will need to find an alternative use for the soft plastics it collects in-store for recycling, which has, to date, been used to make bags for life. McKenzie-Gould said the intention is to incorporate this recycled content into bin bags.

M&S will continue to sell reusable tote bags in addition to the paper bags.

Push for paper packaging

Packaging company DS Smith revealed today that 80% of UK-based consumers would prefer to receive a product in paper or cardboard packaging than plastic packaging.

The firm polled 500 adults who shop online at least four times a year. One in five said they would be willing to pay more for a plastic-free option and one in four said they would not shop again with a brand they perceived to use too much unnecessary packaging.

“At a time when consumers are keeping an eye on their spending and competition for customers is fierce, brands risk losing business if their packaging fails to meet online shoppers’ increased sustainability standards,” said DS Smith’s e-commerce business unit lead for the UK, Anne Curtis.

 

 


 

 

Source edie

Apple touts its first carbon-neutral products

Apple touts its first carbon-neutral products

The Apple product launch event is a highlight in the calendar for anyone working in digital technology. At its headquarters in California on Tuesday (12 September), Apple launched its new iPhone 15 series and ninth Apple Watch series, plus its second iteration of Apple Watch Ultra.

Apple has stated that the new Apple Watch lineup consists solely of carbon-neutral products. It has delivered a 75% reduction in the life-cycle emissions of its watches since 2015 due to investments in clean energy procurement, energy efficiency and reducing transport emissions.

Product re-design and supply chain engagement have also driven reductions in emissions. Each of the watches includes at least 30% recycled or renewable material by weight, for example, including a 100% recycled aluminium casing and 100% recycled cobalt in the battery.

It bears noting that Apple’s carbon accounting for the carbon-neutral claim also covers consumer use of products.

In a statement, the firm said: “Electricity for manufacturing and charging devices represents the largest source of Apple’s emissions across all product lines. To address the latter, Apple has committed to invest in large-scale solar and wind projects around the world. For the carbon-neutral Apple Watch models, the company will match 100% of customers’ expected electricity use for charging.”

To address the 25% residual emissions associated with the watches, Apple will invest in carbon credits “primarily from nature-based projects”.

It has stated an intention to ensure that carbon credits are “high-quality” by assessing whether they represent additional, measurable, quantified and permanent carbon removal. Another key requirement is that the credits are not double-counted.

A surprise move?

Science reporter Justine Calma has argued that Apple’s announcement distracts from the company’s overall impact on climate and the environment. She said a far more important measure of the firm’s work on climate will be whether it delivers its 2030 and 2050 goals.

Apple achieved carbon neutrality for its global corporate operations in 2020 and subsequently pledged to deliver a carbon-neutral value chain by 2030.

It is seeking to reduce emissions upstream and downstream by at least 75% on 2015 levels, only relying on offsetting for a maximum of 25% of residual emissions.

Apple has described this ambition as “aggressive”. Meeting this goal will require increased investments in decarbonising national electricity grids; low-carbon transport innovations and transport efficiencies; product re-design and material innovation.

On the latter, Apple is working to switch to 100% recycled cobalt in batteries, plus 100% recycled tin soldering and gold plating in circuit boards, by 2025. It is also ending the use of leather across all product lines with immediate effect, switching to a new ‘FineWoven’ textile made from 68% post-consumer recycled fibres.

Apple continues to use the language of carbon neutrality despite a forthcoming crackdown on this kind of claim in the EU. Lawmakers voted in May to support a new directive that will prevent companies from badging consumer goods as ‘carbon-neutral’ or ‘carbon-negative’ if they use offsetting.  Only time will tell how Apple will choose to communicate its climate efforts to customers in the EU once this directive comes into force.

Charging port changes  

Another sustainability-related facet of Apple’s latest product launch is the switch from the Apple-exclusive ‘lightning’ charging port to a USB-C port for the iPhone 15.

The change is being made because the EU is mandating that all electronic devices sold within the bloc from 2024 use USB-C charging, in a bid to reduce the e-waste generated by the need for each home to have an array of different chargers.

In the long-term, the result is likely to be waste reduction. But, in the coming months, there are concerns that there will be a spike in the discarding of Apple ‘lightning’ cables. It is estimated that one-quarter of European residents own an iPhone.

 

 


Source edie

France’s Clothing Repair Program to Decrease Fast Fashion

France’s Clothing Repair Program to Decrease Fast Fashion

Fast Fashion is the design, manufacturing and marketing method focused on rapidly producing high volumes of clothing and selling them at inexpensive prices. Over the past few years, fast fashion has increased due to the affordability of many of these items. With fast fashion brands like H&M and Zara and now online brands like Shein taking over the fashion industry, fast fashion doesn’t show any signs of slowing down.

The Fast Fashion Market is projected to reach over $280 million by 2030. Apparel consumption has reached 62 million tonnes a year and is expected to be 102 million tonnes a year by 2030. With the increase in the production of clothing, there is also an increase in the amount of waste produced as well.

Apparel companies produce 53 million tonnes of clothing annually. Over 57% of clothing produced and purchased ends up in landfills. The reason is due to the increase in production. These fast fashion brands use cheaper materials that are generally not made to last more than a year or even a season. Much of what is purchased isn’t worn and is either donated or dumped—with the rise of fast fashion, buying something new when articles rip or tear is cheaper than fixing it.

France’s clothing repair program is trying to change these habits and encourage people to fix their torn clothing. France’s clothing repair program intends to offer a repair bonus for people to mend their clothes. In France, over 772 000 tonnes of clothing are discarded annually, most of which are still wearable.

With France’s clothing repair program, people will receive a $6.73 to $28.05 credit for bringing their shoes and clothes to a cobbler or workshop to be mended. The monetary incentive will be based on the amount of mending that needs to be done. The government will fund the program with around $173 million in contributions over five years. This program aims to create a circular economy for shoes and textiles so that products last longer. This program will hopefully lower how money items people purchase and donate annually.

France’s clothing repair program is run by an eco-organization called Refashion. The organization manages the prevention of waste and management of the end of service life of products on over 5000 companies placing goods onto the market. Within France’s clothing repair program, tailors, clothing brands and repair shops can join the initiatives for free with the organizations.

The organization has reported that approximately 56% of donated textiles can be reused, while 32% can be recycled into new products. By raising awareness about these possibilities and incentivizing repairs, these schemes may actually encourage individuals to reconsider their buying habits. In France, clothing companies are now required to label items with information about the materials used and their country of origin. This will allow customers to make more informed choices and encourage them to shop sustainably.

France’s clothing repair program follows a similar initiative launched last year by the French government, which offered bonuses to individuals to repair their household appliances. In 2020, a law was passed to promote sustainable practices and consumption habits related to household goods.

If more people choose better quality clothing or consciously decide to have their clothing mended, the popularity of the fast fashion industry might begin to decrease. If people are rewarded for their environmental efforts, they will actually save money instead of constantly buying new clothing. It’s an initiative that could have a significant impact on the way we shop and consume. I’m interested to see how it will play out and if other countries will take on similar initiatives.

 

 


 

 

Source – Happy Eco News

Recyclable Phone Batteries Are Now A Reality

Recyclable Phone Batteries Are Now A Reality

Waste is Becoming an Increasingly Important Issue

The disposal of trash and waste is unsurprisingly a mess worldwide. Many problems exist within the structure of trash disposal, with recycling being often neglected in many areas, inconsistent and underdeveloped trash removal infrastructure, and the lack of any trash disposal facilities.

This means it’s relatively common worldwide to see actual rivers of trash.

A component of this issue that is growing daily is the increasing problem of electronic waste, otherwise known as e-waste. E-waste is the garbage created after electronic devices are thrown away after being used.

E-waste makes up anything electronic that goes into the landfill, and the reason this is so problematic because these devices often contain hazardous and toxic chemicals that eventually make their way into our land, water, and atmosphere.

Of the e-waste that is created, 10% of it is made up of cell phone batteries. This specific component of cell phones is increasingly a problem. Beyond the issues I described above, cell phones and other electronics are burned, releasing these dangerous chemicals and creating new ones.

However, many of these issues could be circumvented just by making easily recyclable phone batteries. This is how it could work.

Why Hasn’t This Been Done Already?

One of the major obstacles preventing cellphone batteries from being recycled commonly is that lithium-ion batteries are quite challenging to recycle or reuse.

However, there are many other ways to create cellphone batteries, and one of these ways could present itself as the way forward to create sustainable personal cellular devices.

The RMIT School of Engineering in Australia developed this new recyclable phone battery. The design primarily uses a material called Mxene, a material similar to graphene commonly used in electronics like traditional, not-so-recyclable phone batteries. The primary reason why Mxene isn’t already found in most cell phones is that it rusts easily, which hampers conductivity.

Compared to graphene or lithium-ion batteries, Mxene rusts much quicker, but this property ironically could be the very thing that extends the device’s life. Using sound waves to “brush” off the rust, the researchers estimate that they can extend a conventional phone battery’s life span by three times and create truly recyclable phone batteries.

Hossein Alijani, a Ph.D. student at the university and co-lead researcher of the project, said, “Current methods used to reduce oxidation rely on the chemical coating of the material, which limits the use of the MXene in its native form, in this work, we show that exposing an oxidized MXene film to high-frequency vibrations for just a minute removes the rust on the film. This simple procedure allows its electrical and electrochemical performance to be recovered.”

 

The Future is in Recycling

Reducing waste, period. It is one of the most critical issues facing us. However, in the meantime recycling the waste we are creating is the best solution to the massive amounts of garbage contaminating our planet.

As we continue to move into a world in which electronics play an increasingly important role in our daily lives, we must abandon the disposable electronic-use model. Creating easily removable and recyclable phone batteries is a challenge that is necessary for us to overcome.

With developments in technology like this becoming more common, we will soon see a world without contradiction between electronics and environmental sensitivity. As part of this movement, MXene recyclable phone batteries appear to be the latest and most promising solution to this problem that we have created.

 

 


 

 

Source Happy Eco News

Developing Alternatives to Plastic Payment Cards

Developing Alternatives to Plastic Payment Cards

Over six billion plastic payment cards are produced and shipped worldwide every year. These cards are quickly replacing cash payments because they are a more convenient and secure way of paying. These cards typically comprise several layers of PVC plastic, one of the most common forms of plastic. Each card will contain approximately 5 grams of plastic, weighing 15 000 tonnes. These cards are replaced on average every 3-4 years, and most are discarded into landfill.

Since 2018,Master card has been working to develop more sustainable card options for their cards and other card issuers. Some of these options include:

  • Recycled PVC plastic uses post-industrial waste to make the card. PVC recycling reduces the need for more oil extraction, which supports the creation of new PVC.
  • Polylactic Acid is a bio-sourced plastic produced from either corn or sugar starch. The cards can be industrially composted if they are collected and processed in the correct conditions.
  • Polyethylene Terraphlate contains no chlorine or styrene and is more widely recycled. PETG can be a step towards introducing full circularity.
  • Ocean-sourced cards are made from post-consumer plastic waste found in the ocean or from coastal areas.

Additionally, Mastercard has introduced its Sustainable Card Badge, part of its certification program to encourage the use of more sustainable materials in card manufacturing. The Badge is a card mark made available to qualified card manufacturers and issuers who reduce first-use PVC in plastic payment cards. Issuers will have access to an approved list of vendors and alternative sustainable materials found in the Mastercard Sustainable Materials Directory. This is the world’s first directory of sustainable card materials and information on where to source them. More than 60 financial institutions in more than a dozen countries worldwide have issued Mastercard cards made from approved recycled, recyclable and bio-sourced materials.

Mastercard is also exploring the end-of-life for payment card options, as most materials used in these cards cannot be composted or recycled efficiently. The contaminants, such as the chips and magnetic tape, still need to be addressed as they cannot be composted, separated, or removed in the recycling processes. The emergence of new chemical recycling techniques alongside the traditional mechanical processes makes this an emerging option for cards which will likely see further improvement over the coming years. Mastercard is invested in research regarding the chemical recycling of plastics to find ways they can contribute to a more circular economy.

Mastercard’s efforts will significantly reduce the need for plastic, especially as these cards continue to be manufactured each year. Although these cards are small, the impact can be huge, and it is important to reduce plastic use wherever we can.

 

 


 

 

Source Happy Eco News

Researchers In Syria Have Discovered Concrete Recycling Method

Researchers In Syria Have Discovered Concrete Recycling Method

War is hell. This sentiment has been repeated throughout human history as the devastation and destruction of countries and communities it causes is incalculable. Syria is a prime example of how civil or otherwise war can destroy a society and its infrastructure.

The war began in the context of high youth unemployment, drought, a one-party dictatorship that crushed basic human freedoms and dignity, and extreme wealth inequality. It was a surprise to no one that in 2011, insurgency by oppressed groups in the region began in earnest, spiralling Syria into a conflict that continues to this day with no end in sight. The devastation this war has brought has caused 5.7 million people to flee the country due to the risk that the war has brought to their lives.

The war destroyed 130,000 buildings, many of these the homes of everyday people and their businesses. All this destruction is horrible, and as if they hadn’t experienced enough of it, Syria fell victim to a 7.7 Richter earthquake in February, expanding the damage even further. However, despite all this horrific destruction, serious efforts have been made to expedite the recovery and reconstruction of this battered country. 70% of the 130,000 buildings destroyed were made of reinforced concrete. Scientists have discovered that they can use a significant amount of this rubble to create new concrete, recycling what is there and saving costs compared to importing new concrete.

The study led by Professor Abdulkader Rashwani proved that recycled concrete made from the rubble of old buildings doesn’t significantly impact the mechanical performance of the new concrete. This is the first time recycled concrete has been proven to do this, as other attempts in other countries have been made. Still, due to the disparity in methods of manufacture, mechanical performance hasn’t been guaranteed. When people return, they will want to rebuild the buildings that had been destroyed.

Transportation of raw materials is one of the highest costs, and aggregate being increasingly scarce makes recycling existing materials necessary. This recycled concrete is made by crushing the rubble, removing any steel or textiles, and washing the resulting aggregate. The fine material washed out is sand and cement, and it is also being studied to determine if it can be reused.

The material was then tested for tensile and compressive strength and how much water, co2, and chlorine were absorbed. The concrete passed all of the tests, and now the protocol stands as a model for other war-torn or earthquake-damaged countries to rebuild their cities and communities. In an interview with the Guardian, Professor Rashwani said, “It was our duty to help the people there, a lot of people needed our help, so we went there and forgot about all the bad consequences. We have now started to go to some local councils and help them to put some plans in place for the future. We can at least try to make this region safer and give people some hope.”

The costs of war and conflict between nations and nations between people are often horrendous and often borne by the innocent. Most of the buildings destroyed in the fighting were homes of families and individuals who had nothing to do with the war. Yet still, they are left without homes in their home countries. Having a plan with new methods to guarantee quick reconstruction of these buildings is crucial.

The added benefit of this research is that it is a model that can be applied in other places outside Syria. Syria is simply one country at war right now, and if the path of human history indicates what’s to come, it won’t be the last one either. This research is invaluable for the everyday people ravaged by conflict or disaster, now and in the future.

 

 


 

 

Source Happy Eco News