Search for any green Service

Find green products from around the world in one place

Hydrogen Vehicles Are on the Rise: Here’s What You Need to Know

Hydrogen Vehicles Are on the Rise: Here’s What You Need to Know

Hydrogen Vehicles Are on the Rise: Here’s What You Need to Know

The automotive industry is rapidly transitioning to alternative energy sources for fuel vehicles, considering the greenhouse gasses (GHGs) emitted every mile driven. Battery-electric cars are on the rise, but are better alternatives on the horizon?

Hydrogen emerged as a viable replacement for fossil fuels and could be the next big thing in the automotive industry. The rise of hydrogen fuel cells is coming sooner than you may think, so here’s what you need to know about these vehicles.

 

Rapid Market Growth

The future of hydrogen power is bright, as investors think it has massive potential for the automotive industry. Experts say the global hydrogen fuel cell vehicle market will have a compound annual growth rate of 43% until 2032, culminating in a $57.9 billion value. Automakers understand the severity of today’s climate crisis and use any means necessary to advance their sustainability goals.

 

Harnessing Hydrogen

Hydrogen is unstable, as it reacts with other atoms to form compounds. So, how can you harness this chemical element to be safe for your vehicle? Scientists typically use these methods for hydrogen fuel production:

  • Thermal: The Department of Energy (DoE) says about 95% of today’s hydrogen comes from repurposed natural gas. Scientists combine steam and hydrocarbon fuels to produce hydrogen fuel, requiring high temperatures and attention to detail.
  • Solar: Using renewable energy to produce clean fuel is smart, so experts have used solar power for hydrogen production. For instance, they can harness hydrogen fuel using bacteria and its natural photosynthetic activity.
  • Biology: Bacteria are also helpful for hydrogen fuel production through biological reactions. You can use microbes to break down biomass and wastewater, and these tiny organisms aren’t energy-intensive, as they harness sunlight for power.

 

Refueling Stations

Hydrogen fuel is already available if you live on the West Coast, as most of the existing stations are in California — primarily in Los Angeles and the Bay Area. You can also enjoy this alternative energy source in the Pacific Ocean at the Hawaii Natural Energy Institute. As hydrogen fuel grows in demand, you’ll see more opportunities to fill up with it.

The DoE says the United States has 59 retail hydrogen-fueling stations, but more projects are on the way. Fleet companies may have private areas for fueling their vehicles, especially as long-haul trucks convert to hydrogen fuel.

 

Can Semi-Trucks Use Hydrogen Fuel?

Battery-electric motors are a concern for larger vehicles like light-duty and long-haul trucks. These machines must be powerful enough to propel heavy machines for long distances, but their weight drains energy quickly. Will hydrogen fuel be a solution? The logistics industry has focused on this alternative fuel source for greener highways.

For instance, in 2025, Kenworth will begin full-scale production of Class 8 T680 hydrogen fuel cell electric trucks in collaboration with Toyota. The heavy-duty truck manufacturer will deliver its first hydrogen-powered vehicles this year and then expand production.

While the fuel source changes, the typical qualities in hydrogen-powered trucks do not. This Kenworth Class 8 T680 truck has a max payload of 82,000 pounds, demonstrating its ability to carry a significant amount of goods.

The truck uses Toyota’s 310kW Dual Motor Assembly, as the Japanese automaker has prioritized hydrogen fuel research in the last decade. It recently released the second-generation Mirai, which mixes hydrogen and oxygen to produce electricity.

States like California have imposed strict requirements for long-haul trucks and other vehicles, so hydrogen-powered trucks could be the answer for sustainability and dependable transportation. Kenworth tested hydrogen fuel cell technology at the Port of Los Angeles in 2022 and used its success to build the Class 8 T680 semi-truck. Continued success will likely mean further North American expansion.

 

Powering Outside the Highways

Hydrogen has become a viable option for passenger cars and even long-haul trucks in its early stages. However, highway vehicles are not the only method of transportation using hydrogen power. Last year, North America debuted its first hydrogen train in Quebec, Canada. This machine uses about 50 kg of hydrogen daily and eliminates dependence upon fossil fuels for these trips.

Hydro-Quebec provides energy for the train, enabling it to travel about 90 km between Quebec City and Baie-Saint-Paul. Emissions are less of a worry for the train, as you only see water vapor emerging from its pipes.

 

What Are the Benefits of Hydrogen-Powered Vehicles?

Hydrogen-powered vehicles are likely the future, as automakers heavily invest in the technologies required for these machines. Driving a hydrogen-powered car delivers these four benefits.

1. Reducing Emissions

Auto manufacturers like Toyota are pushing hydrogen fuel technology because of its eco-friendliness. The only emissions are water vapor and heat, thus making them better for the environment. Turning hydrogen fuel cells mainstream would reduce the amount of GHGs emitted daily, which is crucial to combating climate change.

The transition to hydrogen fuel cells would significantly boost the logistics industry, considering how many long-haul trucks hit the road daily. Research shows medium and heavy-duty vehicles in the U.S. emit over 400 million metric tons of GHGs. Converting trucks worldwide would help the surrounding environment and improve health for each road traveled.

2. Easy Transition

While converting existing trucks to hydrogen fuel cells takes time, the transition might be easier than you think. Logistics companies can keep their current gas transport and storage mechanisms, repurposing them for hydrogen fuel.

Additionally, truck owners wouldn’t have to jump through hoops to let their vehicles take hydrogen power. Retrofitting combustion engines for hydrogen power is more straightforward than with electric motors, especially with heavy trucks.

3. Beating Battery-Powered Vehicles

Battery-electric trucks are best for short drives due to their limited range. However, logistics companies need their vehicles to travel hundreds of miles each trip to keep deliveries on time. Hydrogen-powered trucks allow fleet owners to combine sustainability and efficient travel due to their range.

For instance, the Kenworth T680 hydrogen fuel-powered truck ranges up to 450 miles, depending on the driving conditions. Regardless, it’s more than you’d get from an electric truck. In fact, the Kenworth machine boasts one of the highest ranges for any semi-truck using alternative energy sources.

4. Rapid Refueling

Another significant advantage of hydrogen trucks over battery-electric vehicles is the quick refueling. Fully electric trucks will need to wait for a few hours before they can head back on the road, causing trips to be longer than scheduled. However, hydrogen machines only require a few minutes to fill up, greatly boosting logistics companies. The Kenworth hydrogen fuel cell vehicle lets fleet owners increase uptime and reduce lead times.

Foreshadowing a Bright Future

The automotive industry is pushing for fossil fuel alternatives to help the planet’s transportation sector. While battery-electric technology has existed for over a decade, hydrogen fuel cells are another way for automakers to produce cleaner vehicles.

The future of hydrogen vehicles is bright as researchers continue to improve the technology and bring it into the mainstream.

 

 

 


 

 

 

Source  Happy Eco News

Premier League Clubs Agree To Minimum Standard Of Environmental Action

Premier League Clubs Agree To Minimum Standard Of Environmental Action

‘Underpin long-term environmental ambitions’

The Commitment outlines four operational measures, which will build on existing actions and provide a foundation to underpin long-term environmental ambitions. They are:

1. Develop a robust environmental sustainability policy, by the end of the 2024/25 season

2. Designate a senior employee to lead the club’s environmental sustainability activities

3. Develop a greenhouse gas (GHG) emissions dataset (scope 1, 2 and 3) by the end of the 2025/26 season and work towards a standardised football-wide approach to measuring emissions

4. Support the development of a common framework for action via the Premier League Sustainability Working Group (PLSWG)

The statement confirms that ‘the measures have been developed following extensive consultation with clubs and the Premier League Sustainability Working Group, which was established last year to help shape and inform environmental practices across the League.’

 

What impact will this have?

According to Sport Positive Leagues dataset (the latest update of which is in progress, out in March), the majority of Premier League clubs have an environmental policy or strategy in place. They range from a statement on the club’s website, to a large-scale breakdown of their activities, environmental footprint, reporting and ambition. Having a date in place for all clubs to have something robust in place is a strong step forward.

Designating a senior employee to lead the environmental sustainability activities is crucial, to ensure this stays on the agenda and is pushed forward. In Premier League clubs currently this ranges from head of sustainability and sustainability manager roles, to communications, facilities and operations.

Six Premier League clubs currently publicly share some or all of their carbon footprint – Manchester City, Liverpool, Tottenham Hotspur, Wolverhampton Wanderers, Nottingham Forest and Crystal Palace. Some clubs know their emissions footprint but don’t currently publicly report on scope 1, 2 and 3, beyond SECR regulations. Other clubs are earlier on in the journey of capturing data, but the majority are on the way to understanding their baseline. Having a standardised football-wide approach will enable a level playing field.

The development of a common framework for action via PLSWG is an important commitment, as the power of collective and unified action in football is key to ambition, action and success at scale.

 

 


 

 

Source   Forbes

 

Mars on a Procurement Pathway to Net-Zero

Mars on a Procurement Pathway to Net-Zero

Mars has published its open-source action plan to accelerate the drive towards achieving Net Zero emissions, including a new target to cut carbon in half by 2030 across its full value chain. The strategy also involves investing US$1bn over the next three years alone to drive climate action

The strategy incorporates an understanding of how supplier engagement, supply chain and procurement impacts their environmental footprint, as 80% of it comes from their inputs such as raw materials, packaging and logistics.

“The carbon footprint of our entire supply chain from farming through to the end of life of our packaging and everything in between is the same as that of a small country – Finland has almost exactly the same footprint,” explains Barry Parkin the Chief Procurement and Sustainability Officer at Mars Inc. “When we look at where our footprint was ten years ago, 70% or more of it is embedded in the goods or services we buy. So, procurement is therefore absolutely critical.”

This means the role of procurement, supply chain, and supplier engagement is integral to the company reaching their ambitious sustainability targets, and Parkin is acutely aware that means it is essential for them to do things differently. “Our job is to re-imagine and re-design supply chains so that they have a dramatically lower carbon footprint,” he says. “To put it another way, unless we change what we buy, or where we buy it or how we buy it we are not going to really change our carbon footprint. ”

Their roadmap involves removing approximately 15 million metric tons by 2030 and then another 15 million metric tons by 2050 when they reach net zero.  Since 2015 Mars have already reduced emissions by 8%, whilst growing the business by 60%, showing that it is possible to decouple emissions from growth and success of a business.

 

Supplier relationships 

As for any major organisation trying to address their sustainability strategy, it is impossible for Mars to make significant progress with their carbon footprint without the help and buy-in from their enormous supply networks.

“As a global company, we rely on suppliers across our value chain as essential partners in our journey to reach net zero,” says Parkin.  “Like most companies, addressing our Scope 3 emissions is challenging because of their indirect nature and our lack of direct control or visibility. Only by working with our Tier 1 suppliers can we make progress with them on their own emissions and on their upstream emissions with our Tier 2 suppliers and beyond.”

Mars was a founding member of the Supplier Leadership on Climate Transition coalition, that is a dedicated body for instigating climate action through industry-wide supply chains.  This allows companies like Mars to use their scale and influence to guide, mentor and train suppliers with emissions strategies and also celebrate their best practice.

This reflects the collaborative approach Mars is trying to adopt with all their stakeholders to reach their climate targets.  “Suppliers that demonstrate substantial progress in reducing their environmental footprint are recognised and rewarded with additional business,” explains Parkin. “This metrics-driven strategy ensures that our suppliers have a significant role in our journey towards sustainability, aligning their efforts with our commitment to addressing the climate crisis.”

To achieve this relationship, Mars sets clear expectations for suppliers regarding emissions reduction, renewable energy adoption, and sustainable sourcing. They then incorporate those climate performance metrics into some of their biggest supplier’s evaluation criteria.

 

Recipe optimisation 

For one of the global leaders in food products, pet supplies and confectionery, they are also able to leverage product design and ingredients into their net-zero strategy.  Mars describes that as ‘optimising recipes’ and procurement is again integral in making that aspect of the plan a success.

“Our procurement team actively collaborates with suppliers to identify and source new ingredients in a way which lowers emissions and advances our sustainability goals,” says Parkin. “This collaborative approach helps improve our supply chain sustainability performance, including the procurement of ingredients that have a reduced carbon footprint.”

This approach of working closely with the suppliers who provide the ingredients, allows Mars to enhance their product offerings while at the same time finding new ways to reduce the emissions associated with the recipes.

 

Buying-in to the road map 

Parkin is praising the positive reaction from their suppliers to the Net Zero Roadmap, but that is also because many of those partners have been on a sustainability journey with the company for a number of years, since setting out their first scope 3 targets for their full value chain back in 2017.

“Suppliers have expressed their appreciation for the transparency and specificity of our roadmap,” explains Parkin.  “It has enabled them to better understand our expectations and how their contributions fit into the broader picture of achieving net zero emissions. The roadmap’s emphasis on collaboration and collective responsibility has resonated with our suppliers, fostering a spirit of partnership in our shared journey towards sustainability.”

The partnership allows procurement partners to take proactive steps in their organisations and strategies to address their emissions, and be part of a collective responsibility to finding both a sustainable future and a productive business relationship.

Aside from the influence such an ambitious net-zero strategy has on the culture and direction of a company like Mars Inc, it also creates a larger impression on other companies in their business ecosystem as other brands and businesses look to follow their lead.

Barry Parkin is aware of the value of that influence, and how their procurement and supply chain can help lead others to greater sustainable achievements.

“Global companies like Mars play an important role in shaping sustainability standards and advancing climate action at scale,” he explains. “Our influence extends across the globe, allowing us to inspire change on a wider scale. When companies set high sustainability standards, it encourages others in their industries to follow suit.”

He adds: “Companies like Mars have the resources, expertise, and innovation capabilities needed to pioneer sustainable practices and technologies.

“We can invest significantly in research and development, pilot groundbreaking initiatives, and implement sustainable solutions beyond the reach of smaller organisations. This proactive approach not only benefits the environment but also builds a positive reputation with environmentally conscious consumers and attracts like-minded partners.”

If a globally recognised brand like Mars can leverage their sprawling supply and procurement network for better environmental outcomes, it can only help to bring others on the same journey. “This ripple effect fosters industry-wide transformation, promoting a more sustainable future,” finishes Parkin. “If a business such as Mars can halve it’s footprint by 2030, that matters.”

 


 

 

Source   Sustainability

How manufacturers can transition to 100% renewable electricity

How manufacturers can transition to 100% renewable electricity

Manufacturing and other industrial users account for around a third of the world’s energy consumption, according to the International Energy Agency(1). Electricity is a central element of that. If all the power consumed by factories and industrial plants came from renewable sources, it would make a sizeable contribution to tackling climate change.

It is a tough target, but one that companies are increasingly signing up to. The RE100 initiative, for example, has seen more than 400 corporations commit to 100% renewable electricity use across their operations. How they reach that goal will depend on many factors, including what they are making and where.

 

Switching to renewable electricity

“Organisations with lighter electricity needs and stable finances will be best positioned to transition to renewables. Companies with high electricity demand, like furnaces for glass, smelting or other large-scale heating applications and companies with very large footprints – such as expansive warehouses and assembly operations – may have more difficulty,” says Paul Holdredge, Director for Industrials and Transport at consultancy Business for Social Responsibility (BSR).

COP28 president-designate Dr Sultan Al-Jaber told the Adipec conference in Abu Dhabi in early October(2) that heavy industries may be hard to decarbonise but added “We know that solutions exist, and all industries can and must respond.”

The prospect of switching to renewable electricity has become far easier due to recent dramatic cost reductions. According to the International Renewable Energy Agency (IRENA), the price of solar photovoltaic power in 2010 was typically 710% higher than the cheapest fossil fuel, but by 2022 it was 29% cheaper(3). Currently electricity accounts for around 20% of final energy use in manufacturing, according to the International Renewable Energy Agency, and this is only expected to increase.

 

The manufacturing challenge

But it is not just the price of renewable energy, low as it is, that dictates a manufacturer’s ability to move to 100% renewable energy. Both the required initial capital investment and first-mover disadvantage—where it costs pioneers more than those that follow them to deploy new technologies—can significantly slow down a fully renewable transition. Not to mention the lack of availability of certain renewables in certain geographies and the fact that the appropriate infrastructure must be in place for this energy to be delivered—something no one company can do on its own.

Manufacturing requires an enormous amount of electricity in comparison to offices. In some countries or regions where the supply of renewable electricity is limited, like Japan, Taiwan, and Singapore, it is much more expensive than electricity produced by traditional means, placing a significant future cost burden on companies that purchase renewable electricity.

Epson is working to popularize the use of renewable electricity, despite the certainty of short-term cost increases. The company is advancing investment in sustainability to enrich communities and invest in future generations to create social value.

 

Going local

Wherever they are in the world, with whatever types of renewable energy available to them, companies need to adapt to local, national, and global circumstances. Seiko Epson, based in Japan, has done just that. Having switched to 100% renewable electricity for all its sites in Japan in 2021, it will complete the transition to 100% renewable electricity globally by the end of 2023(4). This goal has been made achievable through steady implementation of decarbonization targets and the use of renewable electricity since 2018.

In Nagano Prefecture, Japan, for example, where water sources are abundant, it relies on hydroelectric power. But in the Tohoku area, where it has a semiconductor fabrication plant, it uses hydropower and geothermal heat from the Ou mountains.

It is taking a similar approach outside Japan. In the Philippines, it taps into local geothermal and hydroelectric sources. While in Indonesia, it uses yet another renewable source—biomass power.

“We have used locally produced energy wherever possible,” says Junichi Watanabe, Managing Executive Officer General Administrative Manager, Production Planning Division, whose role encompasses the promotion of Epson’s procurement strategies in the supply chain, including the use of renewable electricity. “Rather than using energy generated in faraway countries, using a particular region’s abundant renewable resources brings many benefits, such as improving energy self-sufficiency and creating jobs.”

In addition to purchasing renewable electricity, Epson co-creates and develops other power sources through continuous renewable electricity purchases. In partnership with Nagano Prefecture and Chubu Electric Power Miraiz Company, Inc., the company began support of hydroelectric power plants in Nagano Prefecture. Two are already in operation (totalling 5,770 kilowatts) and another is scheduled to begin operation in 2024. That number is expected to increase to five by 2025.

Such targets can help a company stand out from the crowd. “Based on our research, setting a near-term goal for 100% renewable electricity use is an example of leadership and a differentiator. Some companies also have roadmaps to transition over longer time periods,” says Holdredge.

 

Among the practical methods companies should consider are:

• Sourcing renewable electricity from local suppliers via contracts with electricity suppliers – the ability to do this will depend on the rules in a particular country but, if it is possible, a company can be confident its electricity is only coming from renewable sources.

• Generating electricity on-site, via rooftop solar panels or, if space allows, wind turbines. Even if they do not generate all the power needed, they can still make a useful contribution.

• Develop battery storage facilities. A common concern about renewable electricity is the risk of supply being interrupted when the wind isn’t blowing or the sun isn’t shining, but storage technology offers a viable way to address that.

 

When it comes to solar power generation systems, Epson’s sites also decide whether to adopt self-investment or power purchase agreement (PPA) based on the individual circumstances of each country or region. The solution will vary from company to company. But most manufacturers are likely to find a combination of these elements will go a long way to reaching their renewable electricity goals.

What’s more, many manufacturers like Epson realize that their indirect GHG emissions from their entire value chain (Scope 3) are much greater than the GHG emissions from their own electricity use (Scope 2). As such, by reducing the sector’s Scope 2 emissions using renewable energy—something the sector can do independently—is likely to have a far greater impact on society. Setting goals early and demonstrating a company’s stance toward solving climate change is the key to co-prosperity with suppliers and a sustainable society.

“For large companies the return on investment is there to make the case for investment in renewables. For smaller companies this can also be true, but it depends on the geography. Government incentives can only speed up transition which is sorely needed,” says Christy Slay, Chief Executive Officer of The Sustainability Consortium.

 

The future for greener manufacturing

There are big gains for humanity if climate change can be addressed, but for manufacturing companies and their shareholders the best approach could also deliver commercial gains.

Consumers and investors are increasingly likely to reward companies with greener credentials, making it an essential part of long-term market positioning. In addition, greater use of renewables and greater self-generation can make a company more resilient to volatile electricity prices on the open market.

“Reaching 100% renewable is tough but pushing to get as close as possible, as soon as possible should be every company’s focus right now,” says Slay. “Epson has managed to stay one step ahead of the industry and is setting an example not only to Japan but to the world.”

 

 


 

 

Source  Reuters

Larger Cargo Bikes in NYC Transport More Goods

Larger Cargo Bikes in NYC Transport More Goods

City is considering larger cargo bikes in NYC to transport more goods in more places.

New York City may soon permit larger cargo bikes in NYC to legally operate on its streets in a move that could substantially grow urban freight delivery by cycling. The NYC Department of Transportation proposed new rules that would legalize pedal-assisted electric cargo trikes up to 10 feet long and 10 feet high.

If adopted, the larger trike dimensions would enable more goods to be transported by bikes rather than vans and trucks. Advocates say embracing cargo bikes tailored for commercial uses can reduce traffic, pollution, noise, and curbside congestion caused by urban delivery vehicles.

Under current regulations, only smaller cargo bikes meeting dimensions for standard bicycles are street-legal in NYC. Larger cargo bikes in NYC are all but inevitable; cargo trikes exceeding those size limits have become popular for urban logistics in other US and European cities.

The proposed guidelines for larger cargo bikes in NYC would align with size allowances for cargo trikes in cities like Seattle, Detroit, and Philadelphia. The NYC DOT stressed cycling freight remains supplementary to traditional truck delivery but offers environmental benefits.

Larger cargo bikes in NYC can “provide increased hauling capacity compared to smaller bicycles…potentially reducing reliance on truck trips and promoting a more sustainable city,” the agency stated.

Expanding cargo bike delivery supports sustainability goals in New York City’s 25-year master plan released in 2021 aimed at equitable climate action. The plan’s transportation section calls for transitioning to cleaner freight options to reach carbon neutrality.

Advocates say allowing larger cargo bikes in NYC tailored for commercial uses would align with the master plan’s priorities. They argue substituting just one fossil fuel-powered delivery truck or van with an electric-assisted cargo trike prevents significant emissions over time. Each trike potentially displaces those larger, polluting vehicles that are worsening both congestion and air quality on NYC streets.

Wider cargo bike adoption can make a meaningful dent in transportation emissions, accounting for nearly 30% of New York City’s total carbon footprint. Cargo bikes also alleviate other pressures urban delivery vehicles create, such as noise, parking limitations, road safety concerns, and decreased public space. Unlocking the potential of micro-mobility freight options like cargo trikes is key to reaching the sustainability vision outlined in the 25-year plan.

The larger cargo bikes in NYC would utilize electric assist motors to haul substantial loads up to 500 pounds with minimal strain compared to pedaling those heavy full loads. Their three-wheeled stable design and sturdy hauling strengths make these cargo trikes ideal urban delivery vehicles for short distances or last-mile trips from distribution hubs. Cargo bikes’ small size, maneuverability, and zero direct emissions also let them nip through urban traffic easily for swift point-to-point goods movement.

Commercial cargo trike models can have front buckets or storage bins to securely transport goods, food orders, packages and more. Some designs allow custom boxes or refrigerated containers to be attached.

Logistics companies like Amazon, UPS, and FedEx already use cargo trikes in a few American cities to shortcut traffic in dense areas. Smaller NYC firms have recognized their benefits as well. For example, Gotham Greens, an urban produce grower, relies on a fleet of cargo bikes to distribute fresh salad greens to local restaurants and stores from their rooftop greenhouses. Beer distributor TriBeca deployed heavy-duty e-trikes last year capable of carrying 800 lbs of beer kegs to pubs and restaurants. They aim to replace several delivery vans to cut diesel emissions.

Experts say each switched delivery from vans to bikes eliminates, on average, about 7 tons of carbon dioxide emissions annually. Less truck traffic and parking also create safer, quieter streets.

But despite their promise, cargo bikes presently make up a tiny fraction of urban goods movement. Questions remain over whether larger cargo bikes in NYC could substantially dent air pollution and congestion woes created by the over 65,000 daily truck trips.

The NYC DOT will collect public feedback on proposed cargo trike regulations this spring before finalizing new rules. Customized trike manufacturers and logistics firms will be watching closely.

Larger cargo bikes have carved growing niches abroad in Amsterdam and London. For cycling advocates, allowing them in New York City could be a critical step to build momentum for sustainable urban freight.

 

 


 

 

Source  Happy Eco News

Walmart and General Mills build a sustainable food supply

Walmart and General Mills build a sustainable food supply
Working as partners in regenerative agriculture projects, Walmart and General Mills are working with authorities to create a more sustainable food system

Disruption of the food supply chain is perhaps the single most impactful event that can have detrimental effects globally. Also, the emissions that are produced as a result of the global food supply are just as impactful to our future and the shortage of food itself.

According to 2018 data from the United States Department of Agriculture (USDA) meat, eggs and nuts are the primary sources of food across the states while vegetables are the third largest and fruit is at the bottom. However, from what we’ve seen over recent years, many would suggest the meat supply chain accounts for a large proportion of the industry’s emissions and is therefore unsustainable in its current mass-production form.

Now, this is not to blame the humble cow or any other animal for climate change, but more the processes in which meat is reared and distributed across the US. With certain regenerative principles in place—and the support from the public to reduce consumption—farms are known to provide higher quality goods that are nutritionally beneficial.

How does regenerative agriculture support a sustainable food system?

This is neither a slight of common habits, nor a simple task to conduct. In order to make the food system sustainable economically, consistent, and less impactful to the climate, examples of regenerative agriculture show the impacts of more mindful farming.

On the 17th October 2023, General Mills and Walmart announced a joint effort that will likely spark further consideration as the organisations advance regenerative agriculture across 600,000 acres of US soil by 2030. This project is about reducing the emissions and resource-drain from farming, improving soil health and, in turn, product quality.

The primary projects will be supported through grant funding from the National Fish and Wildlife Foundation (NFWF) and will reshape the process for growing crops like wheat across the Northern and Southern Great Plains.

Based on the research from the USDA, grains are the second most-consumed foods in the country after the meat, eggs, and nuts group.

These two corporations will also collaborate with Sam’s Club, a division of Walmart that offers superior quality and pricing for millions of items supplied to the US and Puerto Rico.

“Through this partnership, we will work hand-in-hand with Walmart and Sam’s Club to help regenerate the acres of land in the key regions where we source ingredients for our shared business,” says Jon Nudi, Group President, North America Retail at General Mills.

“We are excited by the opportunity to bring our products, including Pillsbury refrigerated dough and Blue Buffalo pet food and treats, to Walmart shelves more sustainably, with the help of our merchants and farmer partners.”

The three organisations believe that regenerative agriculture holds the key to emissions reduction in the supply chain and tackles many of the challenges within the modern food system. They also recognise their collective footprint and overall impact on the industry, and therefore will set the benchmark for regenerative agriculture implementation in the wider industry.

Walmart’s and General Mills’ sustainability alignment

Both organisations are impacted by the fate of the planet. As influential businesses in the food supply chain—Walmart operating across many facets of consumer goods—sustainability is now at the core of their future projects. Walmart’s net-zero emissions target is set for 2040 and will be driven by a number of investments into clean energy, providing 100% renewables to its facilities by 2035. The path to net-zero in Scope 3 requires further action to support its partners, suppliers, and customers to deliver on their own emissions targets.

When it comes to securing the food supply chain, Walmart dedicates much of its support to preserving land for regenerative projects and in investing deforestation-free product sourcing, which was recognised as one of the key downfalls of the meat supply chain—limited space resulting in deforestation.

“We’re committing to making the everyday choice the more sustainable choice for consumers,” says John Laney, Executive Vice President, Food at Walmart US.

“This collaboration is an example of how we are working across our value chain on intentional interventions to help advance regenerative agriculture and ensure surety of supply for these essential food products for the long term.”

As a key supplier of food globally, General Mills owns some of the much-loved brands and will continue to ensure that these products are delivered at lower impact to the planet. Also focusing on regenerative agriculture, energy sourcing and packaging innovation will also allow the company to drive healthier approaches in the food supply chain.

 

 


 

 

Source   Sustainability

Apple touts its first carbon-neutral products

Apple touts its first carbon-neutral products

The Apple product launch event is a highlight in the calendar for anyone working in digital technology. At its headquarters in California on Tuesday (12 September), Apple launched its new iPhone 15 series and ninth Apple Watch series, plus its second iteration of Apple Watch Ultra.

Apple has stated that the new Apple Watch lineup consists solely of carbon-neutral products. It has delivered a 75% reduction in the life-cycle emissions of its watches since 2015 due to investments in clean energy procurement, energy efficiency and reducing transport emissions.

Product re-design and supply chain engagement have also driven reductions in emissions. Each of the watches includes at least 30% recycled or renewable material by weight, for example, including a 100% recycled aluminium casing and 100% recycled cobalt in the battery.

It bears noting that Apple’s carbon accounting for the carbon-neutral claim also covers consumer use of products.

In a statement, the firm said: “Electricity for manufacturing and charging devices represents the largest source of Apple’s emissions across all product lines. To address the latter, Apple has committed to invest in large-scale solar and wind projects around the world. For the carbon-neutral Apple Watch models, the company will match 100% of customers’ expected electricity use for charging.”

To address the 25% residual emissions associated with the watches, Apple will invest in carbon credits “primarily from nature-based projects”.

It has stated an intention to ensure that carbon credits are “high-quality” by assessing whether they represent additional, measurable, quantified and permanent carbon removal. Another key requirement is that the credits are not double-counted.

A surprise move?

Science reporter Justine Calma has argued that Apple’s announcement distracts from the company’s overall impact on climate and the environment. She said a far more important measure of the firm’s work on climate will be whether it delivers its 2030 and 2050 goals.

Apple achieved carbon neutrality for its global corporate operations in 2020 and subsequently pledged to deliver a carbon-neutral value chain by 2030.

It is seeking to reduce emissions upstream and downstream by at least 75% on 2015 levels, only relying on offsetting for a maximum of 25% of residual emissions.

Apple has described this ambition as “aggressive”. Meeting this goal will require increased investments in decarbonising national electricity grids; low-carbon transport innovations and transport efficiencies; product re-design and material innovation.

On the latter, Apple is working to switch to 100% recycled cobalt in batteries, plus 100% recycled tin soldering and gold plating in circuit boards, by 2025. It is also ending the use of leather across all product lines with immediate effect, switching to a new ‘FineWoven’ textile made from 68% post-consumer recycled fibres.

Apple continues to use the language of carbon neutrality despite a forthcoming crackdown on this kind of claim in the EU. Lawmakers voted in May to support a new directive that will prevent companies from badging consumer goods as ‘carbon-neutral’ or ‘carbon-negative’ if they use offsetting.  Only time will tell how Apple will choose to communicate its climate efforts to customers in the EU once this directive comes into force.

Charging port changes  

Another sustainability-related facet of Apple’s latest product launch is the switch from the Apple-exclusive ‘lightning’ charging port to a USB-C port for the iPhone 15.

The change is being made because the EU is mandating that all electronic devices sold within the bloc from 2024 use USB-C charging, in a bid to reduce the e-waste generated by the need for each home to have an array of different chargers.

In the long-term, the result is likely to be waste reduction. But, in the coming months, there are concerns that there will be a spike in the discarding of Apple ‘lightning’ cables. It is estimated that one-quarter of European residents own an iPhone.

 

 


Source edie

Toyota’s smart, sustainable concept city of the future

Toyota’s smart, sustainable concept city of the future

The seeds of the Woven City were sown in 2011, after the Great East Japan Earthquake decimated the area of a manufacturing centre and the Higashi-Fuji Plant was moved to the Tohoku area. Before the move, the plant had produced over 7m vehicles and was a “a driving force in the motorization of Japan.”

Toyota has been present in Japan for over 50 years, with manufacturing centers and corporate bases in the country creating employment and investing in community – The Toyota School programme, established in 1977 has educated over 40,000 young minds.

The plant relocation inspired the creation of Woven City, a hub of sustainability, community and mobility designed by Danish architect Bjarjk Ingels and inline with Toyota’s global sustainability promises.

Electricity for the Woven City is primarily generated by hydrogen powered fuel cells, like Toyota’s Mirai vehicle, in an effort to reduce emissions.

“Building a complete city from the ground up, even on a small scale like this, is a unique opportunity to develop future technologies, including a digital operating system for the city’s infrastructure,” says Akio Toyoda, president, Toyota Motor Corporation. “With people, buildings and vehicles all connected and communicating with each other through data and sensors, we will be able to test connected AI technology… in both the virtual and the physical realms… maximizing its potential.”

The Woven City, named for Toyota’s belief that sustainability and technology needs to be woven into the fabric of our future, has begun as home to around 300 residents but will swell to thousands.

The development of the city, despite looking firmly to the future, featured many traditional Japanese woodworking techniques and recycled wood and other materials.

Sustainable tourism for Thailand

Toyota has just partnered with Pattaya City to develop the city as an electric tourism hub, utilizing the development of sustainable energy to enhance service efficiency, reduce costs, and minimize the ecological impact of the city’s operations.

Sustainable transport lies at the center of the city’s developments, including electric buses as the city trials electric baht-busses.

The undertaking falls under criteria from the decarbonized Sustainable City Development Project, created in 2020 to promote sustainable urbanization

Following in the footsteps of the Woven City’s fuel generation, Toyota and Pattaya City aim to establish Thailand’s first hydrogen refueling station for fuel cell electric vehicles, establishing infrastructure for longevity for the development. As electric vehicles grow in popularity, the consistent question is how the infrastructure of charging stations can keep up with the demand.

The partnership aims to pave the way for sustainable tourism developing globally, encouraging profitability without costing the planet.

 

 

 


 

 

Source Sustainability

SAY Carbon is creating the coolest sustainable boat brand

SAY Carbon is creating the coolest sustainable boat brand

BizClik Media and Sustainability Magazine CEO Glen White had first-hand experience aboard a luxurious, environmentally-friendly yacht made by SAY Carbon Yachts.

The business, founded in Germany, produces cutting-edge, technologically advanced yachts, which are built using carbon fibre. Featuring three luxurious yachts – the SAY 29 (E), SAY 42 and SAY 52 – the business prioritises comfort, luxury and sustainability. While enjoying a trip to Ibiza, Spain, White got up close and personal with the SAY 42.

SAY 42: Ultra-low-emission engines combined with maximum comfort

Boasting low emissions and high performance, the SAY 42 demonstrates that stylish, luxurious and sustainable boating is possible – even for those who want to enjoy the seas with their family and friends

The SAY 42 is equipped with two certified ultra-low-emission V8 engines (860 hp) that consume up to 50% less fuel compared to conventional motor yachts, all while maintaining the same renowned performance.

The SAY 42 is ideal for those who appreciate extravagance. Each yacht is characterised by a modern design, featuring striking and unique lines and is equipped with state-of-the-art technology, including a digital cockpit, Seakeeper 2 stabilisers, pop-up showers, a retractable table and an owner’s cabin with a fully-equipped bathroom.

To ensure the yachts meet the highest possible sustainability standards while continuing to ooze luxury, CEO Karl Wagner, maintains control over every aspect of the manufacturing process. Every SAY Carbon Yacht is meticulously crafted to bring the customer’s vision to life, designed to be user-friendly while promoting maximum comfort.

 

SAY Yachts leading carbon fibre adoption

While working with his previous business, Carbo Tech, Wagner became a leading producer of carbon-fibre-reinforced components for the automotive industry. Its customer base included prominent names from Formula 1, including Aston Martin, McLaren and Porsche.

The numerous advantages of carbon fibre have led to its widespread popularity in various industries, including aviation, construction and motorsports. As pioneers in the pursuit of lightweight design, Wagner and his team demonstrate their expertise in manufacturing innovative motor yachts by utilising the properties of carbon fibre.

“Our expertise in lightweight constructions enables us to achieve a unique combination of acceleration, design and agility while lowering fuel consumption and extending range,” Wagner comments.

Consequently, SAY Yachts has emerged as an international, established manufacturer of luxury motor boats, offering only the highest quality available.

 

 


 

 

Source  Sustainability

Aquifer Thermal Energy Storage for Renewables

Aquifer Thermal Energy Storage for Renewables

It’s Not All About Energy Generation

When the topic of decarbonization comes up, oftentimes, we think of transportation or energy generation. These issues are important, as vehicle emissions are a major problem, as well as emissions from fossil fuel power generation. However, while important, these issues only partially show the roadblocks to moving towards a green future.

Another component that needs to be addressed in the conversation is energy storage and efficiency in renewable energy.

Wind and solar energy are important and rapidly developing technologies but are dependent on weather conditions that vary from month to month and from year to year. In colder months, when houses need to heat, that is when significantly less sunlight is present, thus driving down the available energy to heat them.

This is why energy storage is crucial to the conversation regarding renewable energy, but other solutions might mitigate this problem if properly implemented. This is how aquifer thermal energy storage (ATES) could help assist in cooling and heating buildings, reducing the reliance on other renewable energy sources.

How About Aquifer Thermal Energy Storage?

Energy storage is a difficult topic to address, as the technologies required to implement large-scale grid energy storage require, ironically, a lot of energy. This isn’t helped by the fact that hydrogen energy storage systems right now lose a significant amount of the energy stored.

This is why reducing the grid energy demand is important to implement renewable energy systems successfully. Aquifer thermal energy storage is an interesting form of renewable energy specific to the heating and cooling of buildings because it ties in directly with the seasons that affect solar energy so much.

It works by utilizing two wells connected to the same groundwater reservoir. Cold groundwater is pumped up to cool the building during the summer, then stored. The same process happens in winter but in reverse. Warm groundwater is pumped up into the building, then stored.

Aquifer thermal energy storage systems can also store excess heat from industrial operations, similar to the geothermal systems being deployed in decommissioned oil wells. This process can help bridge the gap between the seasonal availability of renewable energy while at the same time decarbonizing the heating and cooling sector.

This system is also useful because it can make energy infrastructure more resilient by reducing the demand currently placed upon it by heating and cooling. According to a study in Science Direct, Aquifer thermal energy storage systems could reduce reliance on fossil fuels for energy by up to 40%.

New Tech can Help but not Solve Inherent Limits

The importance of renewable energy in the transition to a greener world cannot be understated. However, it is also important to recognize that there are limitations to the technology currently available.

Going forward, there are certainly ways that renewable energy, specifically solar, can become more efficient; the issue of seasonal availability will always be there. This is why alternative methods of addressing needs like heating and cooling are as important.

The issue of energy storage is also important because bridging the gap between availability and need is necessary for making renewable energy a viable alternative to our current fossil fuel energy generation system.

 

 

 


 

 

 

Source Happy Eco News