Search for any green Service

Find green products from around the world in one place

A very Finnish thing’: Big sand battery to store wind and solar energy using crushed soapstone

A very Finnish thing’: Big sand battery to store wind and solar energy using crushed soapstone

The battery will be able to store a week’s heat demand in winter – how does it work?

A huge sand battery is set to slash the carbon emissions of a Finnish town.

The industrial-scale storage unit in Pornainen, southern Finland, will be the world’s biggest sand battery when it comes online within a year.

Capable of storing 100 MWh of thermal energy from solar and wind sources, it will enable residents to eliminate oil from their district heating network, helping to cut emissions by nearly 70 percent.

“It’s exciting to build a large-scale thermal energy storage, which will also act as a primary production plant in Pornainen’s district heating network,” says Liisa Naskali, COO at Polar Night Energy, the company behind the innovation.

“This is a significant step in scaling up the sand battery technology.”

 

Sand batteries are getting bigger in Finland

The new 1 MW sand battery has a precursor. In May 2022, Polar Night Energy rigged a smaller design to a power station in Kankaanpää town.

Launched just as Russia cut off gas supplies in retaliation for Finland joining NATO, the project was a timely example of how renewable energy could be harnessed in a new way.

Euronews Green previously spoke to the young Finnish founders, Tommi Eronen and Markku Ylönen, who engineered the technology.

“We were talking about how – if we had the liberty to design a community for ourselves – how could we solve the energy problem in such a confined environment?” Markku said of the inspiration behind Polar Night Energy in 2018.

“Then quite quickly, especially here in the north, you run into the problem of energy storage if you’re trying to produce the energy as cleanly as possible.”

The friends started playing around with ideas, landing on sand as an affordable way to store the plentiful electricity generated when the sun is shining, or the wind blowing at a high rate.

Finding a way to store these variable renewables is the crux of unleashing their full potential. Lithium batteries work well for specific applications, explains Markku, but aside from their environmental issues and expense, they cannot take in a huge amount of energy.

Grains of sand, it turns out, are surprisingly roomy when it comes to energy storage.

The sand battery in Pornainen will be around 10 times larger than the one still in operation at Vatajankoski power plant in Kankaanpää. The start-up also previously connected a pilot plant to the district heating network of Tampere city.

 

So how do sand batteries work exactly?

It’s quite a simple structure to begin with, Polar Night Energy said of its prototype. A tall tower is filled with low-grade sand and charged up with the heat from excess solar and wind electricity.

This works by a process called resistive heating, whereby heat is generated through the friction created when an electrical current passes through any material that is not a superconductor. The hot air is then circulated in the container through a heat exchanger.

The sand can store heat at around 500C for several days to even months, providing a valuable store of cheaper energy during the winter. When needed, the battery discharges the hot air – warming water in the district heating network. Homes, offices and even the local swimming pool all benefit in Kankaanpää, for example.

“There’s really nothing fancy there,” Markku says of the storage. “The complex part happens on the computer; we need to know how the energy, or heat, moves inside the storage, so that we know all the time how much is available and at what rate we can discharge and charge.”

 

How will the sand battery serve residents in Pornainen?

Having refined its charging algorithms, Polar Night Energy is now ready to scale up the storage tech in Pornainen.

Once completed, the new battery will be integrated with the network of Loviisan Lämpö, the Finnish heating company that supplies district heating in the area.

“Loviisan Lämpö is moving towards more environmentally friendly energy production. With the Sand Battery, we can significantly reduce energy produced by combustion and completely eliminate the use of oil,” says CEO Mikko Paajanen.

The project also aligns with Pornainen’s plans for carbon neutrality. Many of its buildings, including the comprehensive school, town hall, and library, rely on district heating.

Mayor of Pornainen Antti Kuusela says the municipality “welcomes all innovative development projects that reduce emissions in district heating operations and contribute to network expansion.”

In total, the sand battery is expected to knock off 160 tonnes of carbon dioxide equivalent emissions per year. As well as weaning the town off oil, woodchip burning is expected to drop by 60 per cent as a result.

The battery’s thermal energy storage capacity equates to almost one month’s heat demand in summer and a one-week demand in winter in Pornainen, Polar Night Energy says.

Construction and testing of the 13 metres high by 15 metres wide battery is estimated to take around 13 months, meaning it should be keeping residents warm well before winter 2025.

 

Is sand a sustainable material?

“We wanted to find something that can be sourced nearly everywhere in the world,” Markku said. But is sand as ubiquitous as we might think?

Demand for the construction material is set to soar by 45 per cent in the next 40 years, according to a recent Dutch study. Building sand is typically extracted from rivers and lakes, and ‘sand pirates’ are speeding up its loss from these ecosystems.

But as far as the Finnish engineers are concerned, it doesn’t really matter where the sand comes from. Though builders’ sand was used initially (to limit transport emissions), sand batteries work with any sand-like material that has a high enough density, within certain thermodynamic parameters.

In Pornainen, Polar Night Energy has found a sustainable material in crushed soapstone; a by-product of a Finnish company’s manufacture of heat-retaining fireplaces.

“Tulikivi is a well-known and traditional company,” says Naskali. “The soapstone they use is a very Finnish thing.”

“We always choose the thermal energy storage medium based on the customer’s needs. Examining and testing different materials is crucial for us to use materials that are suitable in terms of properties, cost-effectiveness, and promotion of circular economy,” she adds.

Polar Night Energy has big ambitions to take its technology worldwide.

As Markku told us back in 2022, “we want to build a hundred times larger storages around the world as fast as possible.”

 

 


 

 

Source  euronews.green

Water Based Battery Safer than Lithium

Water Based Battery Safer than Lithium

A novel water based battery is said to be safer than lithium at half the cost.
A Boston-area startup called Alsym Energy has introduced a rechargeable water based battery that could match lithium-ion batteries’ performance at a fraction of the price.

In addition to using inexpensive, easily accessible materials like manganese and metal oxide, the novel battery is based on water, according to an initial report from Fast Company.

Being a water based battery means it avoids some of the main drawbacks of current batteries, such as the potential for lithium-ion battery fires and the negative impact of mining on the environment. And thanks to the use of non-toxic materials, the water based battery design is simpler to recycle, which is always a bonus.

Electric vehicles are becoming more important as the world’s nations step up their efforts to decarbonize the grid. That’s because they can aid in decarbonizing both transportation and supply of electricity through reduced tailpipe emissions and offer flexibility. Naturally, many automakers are tapping into the market by producing luxurious EVs; however, the expensive price tag remains to be a problem to this day. The costs are partly due to the lithium-ion batteries that are used in electric vehicles, which are too costly to make EVs that can compete in price tag with cars that run on fossil fuels.

This is where Alsym Energy, which recently emerged from stealth and secured $32 million from investors, comes in. According to a press release, with its first partner being an automaker in India, the startup wants to make it possible for manufacturers to produce cheaper electric vehicles.

“Our motivation was to make it affordable so that it could be widely deployed as opposed to niche,” Mukesh Chatter, CEO and co-founder of the startup, told Fast Company.

The Alsym Energy water based battery is inexpensive enough that it might be used in developing countries to store off-grid solar power. This is especially crucial for individuals who do not currently have access to energy.

 

What Makes the Water Based Battery Special?
The water based zinc battery makes use of other affordable, easily accessible components like manganese and metal oxide. Crucially, it does not contain cobalt, an expensive critical component of lithium batteries that also contributes to supply-chain health and environmental issues due to unethical mining practices. It also doesn’t use lithium at all, which requires resource-intensive salar brine extraction methods, mainly concentrated in conflict-prone regions of South America. Avoiding lithium and cobalt reliance is incredibly important as both metals have seen extreme price increases recently amid surging EV demand.

Lithium carbonate prices have skyrocketed over 750% in the last two years. And cobalt more than doubled in cost since 2020. These unstable dynamics will likely drive up prices of lithium-ion batteries for the foreseeable future. By swapping water for expensive, ethically fraught raw materials, the aqueous zinc batter stands to radically transform the energy storage calculus in terms of affordability, local manufacturing potential, and stability of supply chains.

According to the team behind Alsym Energy, the new design has “lithium-like performance.” But unlike the latter, Alsym Energy’s batteries are not flammable. This saves money as it doesn’t require special protection to avoid fires and gives the batteries additional applications, such as use in ships, where the industry is particularly concerned about fire risk.

If all goes to plan, Alsym Energy will start beta testing with its first customers in early 2023, with high-volume production beginning as early as 2025. The novel battery design will surely make waves globally; however, the company’s priority is to first make it affordable in low-income regions.

 

 


 

 

Source  Happy Eco News

The Miraculous Material Transforming Energy Storage

The Miraculous Material Transforming Energy Storage

A material discovered less than two decades ago could become the key to safer, faster-charging and lighter batteries that power electronic devices, electric vehicles, and stationary energy storage.    Since the ‘supermaterial’ graphene was first isolated in 2004 by researchers at The University of Manchester in the UK, a growing number of graphene-making start-ups have been developing battery technologies which, the companies say, will usher in a future of fast-charging devices and electric vehicles (EVs), with higher energy capacity and without risks of overheating.

Graphene is only a single atom thick. It’s a superconductor of electricity and heat, and very light. It’s more than 100 times stronger than steel, but also 6 times lighter. Graphene slows the heating process in lithium batteries and allows up to five times faster charging speeds. Because it has low resistivity, graphene conducts heat evenly across the battery to help it cool, says one of the start-ups working with graphene, Real Graphene.

Graphene is not yet used in EVs or stationary storage systems, but developers of the material and technologies with it say that this supermaterial, because of its mechanical properties, holds the promise of more powerful, safer, and faster-charging batteries.

Graphene has the potential to be used not only in consumer electronics, but also in EVs and storage of solar and wind power, researchers at The University of Manchester say. Developing graphene supercapacitators could help enable high-performance electric supercars. Because graphene supercapacitators are light, they could also reduce the weight of cars or planes, according to the university, which is also studying, with its commercial partners, graphene’s potential in grid applications and storing wind or solar power.

Start-ups have recently accelerated the development of graphene and its incorporation into batteries.

Los Angeles-based graphene manufacturer Nanotech Energy, for example, said last year it had developed and scaled a process to produce graphene with more than 90 percent of its content monolayers—the purest form of graphene available in mass production quantities.

The company also launched in 2020 a proprietary non-flammable, high-performing battery ready for commercialization.

“We perfected the battery by utilizing the extraordinary electronic and mechanical properties of graphene to increase the battery capacity. To further increase the safety of a lithium ion battery, we took a step further by designing a non-flammable electrolyte that can withstand operation at high temperatures without catching fire,” Maher El-Kady, co-founder and Chief Technology Officer of Nanotech Energy, said at the time.

“Most industries and end users are confined to the technology of lithium-ion batteries, from smartphone and laptop manufacturers to automotive manufacturers to the consumer at large,” Dr. Jack Kavanaugh, chairman and CEO of Nanotech Energy, said.

“Nanotech Energy now offers all of these industries a path toward a safe and more powerful battery technology – a game changer for them,” Kavanaugh added.

Graphene Batteries of Norway is developing Lithium-sulfur (LiS) battery technology enhanced with graphene derivatives. The company has developed a sulfur cathode based on a proprietary method and is targeting stationary energy storage systems as one of the areas of application of its technology.

U.S. firm NanoGraf is developing silicon-graphene anode materials that enable longer-lasting and faster-charging batteries. NanoGraf believes that current lithium-ion battery chemistries have hit a plateau in performance improvements. The company says its silicon alloy-graphene material architecture in the anode could be customized to achieve between three and six times higher capacity than current graphite-based anodes.

Electric vehicles with batteries containing graphene will require at least four years of additional research and testing, NanoGraf’s Chip Breitenkamp, a polymer scientist and VP of business development, told Futurism at the end of last year.

The company is confident that its technology would work for EVs, but it knows it would take a few more years to have the thumbs-up for electric cars.

Graphene is an amazing material for batteries, Breitenkamp told Futurism, adding that, “Essentially, graphene can play a central role in powering a sustainable, electric future.”

 


 

By Tsvetana Paraskova for Oilprice.com

Source Oilprice.com