Search for any green Service

Find green products from around the world in one place

Solar Farms Help Bees: Solar Installations for the Bees

Solar Farms Help Bees: Solar Installations for the Bees

Solar farms help bees: Solar farms emerging as sanctuaries for declining wild and honey bee populations.

In an unexpected turn, solar farms help bees and are emerging as potential sanctuaries for declining bee populations, providing a secondary purpose beyond clean energy generation. A recent study reveals that strategically planting native flowers and grasses around solar installations significantly enhances the population and diversity of crucial pollinators like bees, offering a promising avenue for both clean energy expansion and environmental conservation.

Research conducted by scientists from the Department of Energy’s Argonne National Lab, in collaboration with the National Renewable Energy Lab, focused on assessing the impacts on insects from two large solar installations situated on retired farmland in Minnesota. Enel Green Power North America, the operators of these solar sites, undertook the initiative to plant wildflower mixes alongside the panel arrays during construction in 2018. The researchers then conducted comprehensive year-round insect surveys at these facilities from 2018 to 2022.

The findings from the study are nothing short of remarkable; solar farms help bees. Over the five-year observation period, both native bee and monarch butterfly populations increased more than twenty-fold. The areas surrounding the solar panels transformed into thriving, prairie-like habitats abundant with essential flowering nourishment. The overall insect populations tripled, surpassing initial expectations. Additionally, these flourishing hubs of pollinators are extending benefits to vegetation in nearby agricultural areas, as evidenced by satellite imaging.

Dr. Lee Walston, an ecologist at Argonne and the lead author of the study, expressed enthusiasm about the scale of positive influence managed solar landscapes can have on insect biodiversity and abundance. The strategic integration of natural ecosystem elements adjacent to renewable projects, as demonstrated in this study, could potentially offer a win-win scenario, supporting the expansion of clean energy infrastructure while addressing the decline in insect populations.

The research underscores the concept of “solar sharing” – a departure from the traditional approach of isolating solar infrastructure from its surroundings. By allowing vegetation to thrive around solar facilities, solar farms help bees, and a new haven is created to support fragile bee colonies. The collapse of global bee populations poses a severe threat to agriculture, as over $500 billion in crop production relies on natural pollination annually.

But it doesn’t have to be only about the bees. Agrovoltaics refers to co-locating agriculture and solar photovoltaic systems on the same land. The solar panels are elevated and spaced out to allow crops to be grown underneath while allowing sunlight to reach the crops. The partial shade created by the solar panels can benefit certain crops by providing shelter, reducing evapotranspiration, and lessening weed pressure. The crops benefit the solar infrastructure by reducing heat under and around the panels.

Some bee-friendly crops and flowers that could thrive under the partial shade of solar panels include potatoes, cabbage, kale, carrots, Brussels sprouts, celery, spinach, onions, garlic, lettuce, arugula, strawberries, asparagus, leeks, swiss chard, parsley, oregano, green beans, sunflowers, cosmos flowers, marigolds, clovers, borage, and many varieties of wildflowers. These provide nutrient-rich pollen and nectar that support diverse bee populations.

These findings open the door to a new perspective on the relationship between solar power and ecological conservation. Instead of erecting barriers, solar infrastructure can be designed to coexist harmoniously with the environment. The success observed in this study suggests that solar farms help bees and can play a crucial role in aiding declining bee populations, offering hope for preserving essential pollinators.

As the world grapples with the urgent need for sustainable practices amid the climate crisis, the authors hope these groundbreaking findings will inspire further research. Exploring habitat-friendly solar blueprints to integrate nature into the urgent climate transition could be a transformative step forward. Dr. Walston emphasized the potential symbiosis between solar power and ecological conservation, envisioning bees flocking to blossoms beneath solar panels, which may reveal surprising pathways to advance sustainable energy and agriculture concurrently.

In conclusion, solar farms help bees. Once seen solely as agents of clean energy, they are now emerging as potential allies in the crucial mission to preserve and protect bee populations. This unexpected synergy between renewable energy infrastructure and environmental conservation opens doors to innovative solutions that could redefine the future of sustainable energy and agriculture.

 

 


 

 

Source   Happy Eco News

The Green Revolution: Sharing Leading the Way

The Green Revolution: Sharing Leading the Way

The Green Revolution: Sharing leading the way

In a world grappling with pressing environmental challenges, the call for sustainable solutions has never been more urgent. One such solution gaining rapid momentum is the sharing economy, a model that not only promotes resource efficiency but also leads us on the path towards a greener planet. The sharing economy actively encourages the sharing, renting, and borrowing of goods, services, and spaces, fostering a sense of community while simultaneously minimizing our ecological footprint. In this article, we explore why sharing and the sharing economy are indispensable for the planet and how they can shape a more sustainable future.

 

Resource Conservation

At the heart of the sharing economy lies its ability to optimize resource utilization. Sharing goods ensures that their lifespan is maximized, consequently reducing the need for overproduction. A prime example is the success of car-sharing services. Instead of each individual owning a car that remains idle for most of its life, car-sharing platforms enable multiple people to use the same vehicle, thus decreasing the number of cars on the road and the associated resource consumption.

Reduced Waste

In a world plagued by excessive waste production, the sharing economy provides a remedy by discouraging unnecessary consumption. Sharing platforms offer individuals access to items they need temporarily, effectively reducing the demand for single-use products. Tools, appliances, or clothing can be shared within a community, eliminating the need for every individual to buy these items individually. This practice significantly reduces waste generation and lessens the environmental impact linked to manufacturing and disposal.

Energy Efficiency

The sharing economy also champions energy efficiency by encouraging the utilization of existing resources rather than the creation of new ones. Home-sharing platforms, for instance, enable homeowners to rent out their unused spaces, be it an extra room or an entire house. By making use of existing housing infrastructure, we optimise energy consumption in contrast to constructing new buildings. Furthermore, these platforms incentivise homeowners to invest in energy-efficient practices and technologies, such as renewable energy systems or energy-saving appliances, ultimately reducing carbon emissions.

Sustainable Lifestyles

Embracing the sharing economy fosters a shift in mindset from ownership to access. Instead of relentlessly pursuing possession, people begin to prioritize experiences and the efficient use of resources. This shift in consumer behavior can lead to a more sustainable lifestyle. When individuals recognize the value of sharing and collaboration, they become more conscious of their consumption patterns, opting for sustainable choices that benefit the planet.

Strengthened Communities

The sharing economy has a profound social impact as it brings people together and builds stronger communities. Sharing platforms often connect individuals living in close proximity, facilitating interaction and trust-building. When people collaborate, share resources, and support one another, a sense of belonging and shared responsibility develops. These communities often extend beyond the digital realm, fostering increased social cohesion and support networks.

Innovation and Entrepreneurship

The sharing economy has opened up avenues for innovation and entrepreneurship, particularly in sustainable sectors. It has given rise to new businesses and start-ups focused on sharing services, renewable energy, sustainable transportation, and circular economy practices. These ventures have the potential to create new jobs, drive economic growth, and contribute to a more sustainable future.

Leading the Way

Companies like RentMy enable people to “share” everything they own with others in their community. From paddleboards to canoes, DIY tools to garden equipment, musical instruments to cooking appliances, you can earn money from all the items that are just sitting around.

Tentshare and Camptoo do the same but for niched products like tents, camping equipment, and camper vans, allowing people to experience an adventure weekend without the significant upfront costs for all the equipment.

Then there’s Bike Club, a subscription service for bicycles that allows your child to upgrade each time they outgrow their ride. For adults, there’s Spinlister, which connects people who want to ride bikes with bike owners all over the world.

 

Next Steps

Without a doubt, the sharing economy is here to stay, largely because the benefits it offers are immense. It’s a sustainable choice, reducing the demand for brand-new products. It also promotes community, particularly those with a local focus. It can save and earn you money, with peer-to-peer lending offering an alternative to buying expensive equipment outright and also providing additional income to those renting out their assets.

But what truly drives this fast-growing economy is trust.

This is what allows someone to take a car ride from a stranger or rent a room in a house from someone they’ve never met.

 

How Do You Build Trust?

The article, aptly titled “The Decline of Serial Killers and the Rise of the Sharing Economy,” suggests that the internet has played a significant role in increasing trust between strangers.

Thanks to the fact that nearly all of us have a virtual identity these days, it’s challenging to go completely under the radar, reducing our fear of strangers.

This means we are more willing to engage with those we don’t know, seeing “strangers” as “peers.”

Businesses operating within the sharing economy are also employing various tactics to build upon this trust. For example, we encourage users to upload profile photos and write detailed profile descriptions that help identify them on a personal level.

We have also addressed concerns about the risk of damage. This has been a vital part of the development of RentMy. We provide extensive insurance protection for all those on our platform, allowing lenders to loan their items out risk-free, knowing that we will cover any damage or loss.

 

Final Thoughts

In a world increasingly aware of the environmental challenges we face, the sharing economy has emerged as a beacon of hope, leading the way towards a more sustainable future. It champions resource conservation, reduces waste, promotes energy efficiency, and encourages sustainable lifestyles. Moreover, it fosters stronger communities, fuels innovation and entrepreneurship, and ultimately drives positive change in our society.

Companies like RentMy, Tentshare, and Bike Club exemplify how individuals and businesses can play a pivotal role in this transformative movement. The sharing economy is not only here to stay but also set to thrive, offering a sustainable, community-driven, and financially rewarding path forward.

But, as we embrace the sharing economy, we must recognise that trust is its cornerstone. The internet has been a key enabler, reducing our fear of strangers and turning them into peers. Building trust involves transparency, identity verification, and addressing concerns, such as the risk of damage. At RentMy, we take these concerns seriously, offering comprehensive insurance protection to assure both sharers and renters.

Trust is the bridge that allows us to share with one another, and as we continue down this path, it’s a bridge that will only strengthen and lead us towards a greener, more interconnected world. So, as we take that car ride from a stranger or rent a room from someone we’ve never met, we are not just participating in the sharing economy; we are actively shaping a more sustainable, connected, and trust-driven future for all.

 

 


 

 

Source   Happy Eco News

Sustainable Supply: Transforming the Global Supply Chain with Green Practices

Sustainable Supply: Transforming the Global Supply Chain with Green Practices

Sustainable Supply: Transforming the Global Supply Chain with Green Practices

People can already feel the effect of global warming, making them ask what they can do to combat the crisis. Riding a bike to work and recycling are excellent starting points.

Still, the world needs more significant changes to ensure future generations have opportunities to succeed. How can humanity achieve a better planet? It starts with a sustainable supply chain.

Here’s a guide on why it’s the next step in solving the climate crisis.

 

How to Achieve a Sustainable Supply Chain

Actions speak louder than words, and they’re how the Earth will achieve long-lasting change. These six strategies demonstrate creating a sustainable supply chain this decade and beyond.

1. Switch to Renewable Energy Sources

Sustainability starts with switching to renewable energy sources. Solar, wind, nuclear and geothermal power are only some of the options available. Renewable energy sources are better for the environment because they don’t release greenhouse gases (GHGs), such as carbon dioxide (CO2). They’re also better for the supply chain because you can produce renewable energy locally instead of depending on a far-away supplier.

Renewable energy has increased in the past few decades, with experts seeing consumption triple since 2013. These sources have become more commonplace as governments and companies see the benefits of installing solar panels, wind turbines and other technologies.

2. Reduce Fossil Fuel Consumption

Increasing renewable energy consumption needs to happen simultaneously with reducing fossil fuel utilization. According to the United Nations, fossil fuels are the largest contributor to climate change. Coal, oil and gas constitute about 90% of CO2 and 75% of GHG emissions. Ocean temperatures are rising, glaciers are melting, and natural disasters are worsening daily. It’s hard not to look at fossil fuel as the primary suspect.

The supply chain would benefit from reducing its fossil fuel consumption because of how volatile prices can be. Gas prices fluctuate with supply and demand, so even minor disruptions in production can significantly increase costs. For example, severe weather increases natural gas demand and leads to suppliers raising rates. Relying on renewable resources removes the uncertainty for many companies.

3. Electrify the Fleets

Removing fossil fuels from the supply chain means scrutinizing which industries use them the most. A good place to start is the automotive industry, considering the millions of cars and trucks driving on the streets daily. Most automobiles you pass have tailpipes emitting GHGs. The European Union (EU) says road transportation contributed nearly 72% of total emissions from member nations.

Electrifying fleets is the fastest way to reduce emissions from the transportation industry. Electric vehicles (EVs), trains and other forms of transport are slowly electrifying as manufacturers see the benefits of using this technology. The global supply chain would become more sustainable and secure because you can produce electricity at home. In contrast, oil and gas often come from international suppliers. Plus, EV research, manufacturing and production create thousands of job opportunities worldwide.

Integrating EVs into the supply chain requires more widespread adoption. Unfortunately, EVs cost more than petrol cars due to higher production costs. Manufacturing should become less expensive in the next decade to make these vehicles more accessible and affordable.

4. Change the Packaging

E-commerce is another sector worth scrutinizing due to its environmental impact. The world has relied more on e-commerce since the pandemic, with online retailers making shopping more accessible for consumers. Experts foresee a 14.7% compound annual growth rate (CAGR) until 2027 in the e-commerce market, demonstrating how the world has shifted in its buying preferences.

Reducing the environmental impact of e-commerce entails switching to EVs and changing the packaging. Many sites use non-recyclable materials for their packages, and the environmental cost adds up quickly. The Environmental Protection Agency (EPA) says packaging and containers significantly contribute to municipal solid waste, adding to landfills worldwide.

The supply chain would become more sustainable if e-commerce companies switched to more sustainable packaging. Some businesses have changed to mushroom, seaweed, cornstarch and other more environmentally friendly materials for their packages. These options are more sustainable because they’re biodegradable and compostable. The end user can dispose of the container and feel better about their carbon footprint.

5. Emphasize ESG Scores

How will the planet get large companies on board with a sustainable supply chain? The leading motivator for multinational corporations is environmental, social and governance (ESG) scores. This metric tracks how a company promotes environmental policies, social justice and governing equity.

How many women and people of color are on the board? What were a corporation’s emissions last year? ESG scores determine these statistics on a 0 to 100 scale, with a score below 50 indicating poor performance.

Why do ESG scores matter? Investors are talking with their wallets. Shareholders are more likely to invest in companies demonstrating care for the environment and people within the organization. Businesses with minimal or no concern for the planet are more likely to fall behind because they’re less sustainable and profitable.

6. Push for Government Action

Ultimately, it’s up to governmental bodies worldwide to enforce environmental policies and hold companies accountable. Corporations can release statements supporting eco-friendly ideas, but some find themselves greenwashing and doing more harm than good. Environmental lobbyists and activist groups push the government to push businesses to do the right thing and enact favorable policies.

 

Why a Sustainable Supply Chain Is Necessary

Companies have touted making a sustainable supply chain this decade, so it’s worth asking why it’s necessary. Here are a few reasons why improving the supply chain is vital.

Stabilizing Economies

The supply chain disruptions from 2020 to 2022 demonstrate global economies’ vulnerability. A sustainable supply chain means increasing regional domestic solutions instead of relying on international suppliers. Ports can close due to infectious diseases and other issues, so making an efficient supply chain is essential moving forward.

Curbing Global Warming

The top reason for making a sustainable supply chain is to curb global warming. The National Aeronautics and Space Administration (NASA) says summer 2023 was the hottest on record, with information dating back to 1880. Scientists attribute the rise in global temperatures to human activity worldwide. Reducing this rise requires making the supply chain more sustainable. s

GHGs are a significant factor in climate change, with countries like the U.S., China and India contributing the most each year. Reducing emissions is essential to prevent climate change’s worst environmental and human health impacts. Research shows a positive correlation between CO2 emissions and disability-adjusted life years, meaning reducing emissions leads to longer and healthier lives.

Lowering Costs

A sustainable supply chain makes sense for the environment and a company’s bottom line. Sustainable supply chains lead to reduced costs associated with energy production and consumption. Relying on solar and wind power at home is less expensive and more reliable in the long run than depending on foreign oil.

 

Ensuring a Sustainable Supply Chain for the Future

Time is running out to stop the worst effects of climate change. Fortunately, the planet still has a few years left to control rising temperatures and set humanity on a better path. Creating a better Earth starts with building a more sustainable supply chain. These six ways demonstrate what needs to happen.

 

 


 

 

Source  –  Happy Eco News

Living Green in the Suburbs

Living Green in the Suburbs

Living green in the suburbs is gaining interest from all over the US. Today, 8 of every 10 Americans live in the suburbs. Suburbs are areas within a metropolitan area that are primarily residential. They are not as densely populated as the inner city and are generally a separate political entity of the city. In many suburban areas, a car is required to get around the area and enter the main city or downtown core. In America, the suburbs are responsible for 50% of carbon emissions due to car dependence.

Moreover, these homes conserve less energy as they are required to heat and cool larger houses. Many suburban homes have lawns which require water and maintenance. Over 3 trillion gallons of water a year across 40 million acres of lawn is used in the US. Lawns are also one of the nation’s largest sources of pollution due to the chemical runoff from pesticides and fertilizers that make their way into waterways. Suburban lawns have been known to contaminate swimming and drinking water and harm local fish.

Living Green in the suburbs is simple (and fun).

But it doesn’t all have to be bad. Many environmentally friendly solutions exist to help make living green in the suburbs easier. Front or backyards could be transformed into wildflower meadows or rain gardens. Wildflower meadows mainly contain native plants and are a perfect habitat for pollinators like bees, butterflies and birds. Rain gardens are filled with plants and native grasses that collect storm water runoff from roofs, driveways and streets and are ways to protect the aquatic ecosystem.

Another lawn alternative is planting ground covers that require no mowing and little fertilizer and water. Food scaping is also growing in popularity as a lawn replacement as it enables sustainable edible landscapes. The plants can be edible, which will help contribute to food security, or ornamental, providing an aesthetically pleasing landscape with little planning.

Another way for suburbanites to reduce their environmental impact is by harvesting rainwater from runoff surfaces. The water can be used for irrigation and toilet flushing. It also reduces energy use and carbon emissions from water treatment industries that treat and transfer water.

Reducing energy consumption while living green in the suburbs includes buying more energy-efficient light bulbs, installing insulation and storm windows, purchasing Energy Star Label appliances and choosing renewable energy. Within these suburban communities, a community solar project may allow homeowners to buy into a collectively owned energy project.

Here is an easy-to-follow checklist for living green in the suburbs.

1. Reduce, reuse, and recycle: Practice the three R’s of sustainability by reducing your disposable consumption, reusing items as much as possible, and recycling materials such as paper, plastics, and glass.

2. Compost: Start a compost pile to reduce organic waste and produce nutrient-rich soil for gardening.

3. Install energy-efficient appliances: Replace old appliances with energy-efficient models to reduce energy consumption and save money on utility bills.

4. Use public transportation or carpool: Use public transportation whenever possible or carpool with others to reduce carbon emissions from vehicles.

5. Plant native species in your yard: Planting native species can help support biodiversity and provide habitats for local wildlife.

6. Conserve water: Install low-flow showerheads and toilets, and limit outdoor watering to reduce water usage.

7. Use eco-friendly cleaning products: Switch to environmentally friendly cleaning products that use natural ingredients instead of harsh chemicals.

8. Support local farmers and businesses: Buy produce and products from local farmers and businesses to reduce the carbon footprint associated with shipping and distribution.

9. Use solar power: Install solar panels on your property to produce clean energy and reduce reliance on non-renewable energy sources.

10. Participate in community-wide sustainability initiatives: Join community groups or organizations that promote green living and participate in local sustainability programs or events.

Just because you live in the suburbs, it doesn’t mean you get a free pass to environmental damage. Suburban living can be environmentally damaging, but many opportunities exist to reduce your impact. By simply converting your lawn, you can protect local wildlife and ecosystems. Finding ways to reduce your energy consumption, installing compost bins and piles, and even choosing to eat locally and seasonally will all positively impact how you live, no matter where you live and soon you will find your own family living green in the suburbs.

 

 


 

 

Source Happy Eco News

Green energy – Learn more about green energy sources

Green energy – Learn more about green energy sources

Green energy: What it is and how it works

Green energy is electricity with substantially less carbon dioxide output than fossil fuels. Sources that cause little-to-no impact on the world’s carbon footprint are considered green.

Green electricity sources include:

  • Geothermal energy
  • Solar energy
  • Wind energy
  • Hydro energy
  • Biomass energy

More Americans are looking favorably at green energy companies and green energy plans to help the environment. Plus, with President Biden’s current initiatives of “achieving a carbon pollution-free electricity sector by 2035,” the push toward reducing carbon dioxide, also called greenhouse gas emissions, is at an all-time high.

Most scientists today agree that the world is getting warmer due to carbon dioxide production. The good news is that the U.S. was the second leading country “in installed renewable energy capacity worldwide in 2020,” following China in the top spot, according to Statista.

Within the U.S., Texas, California, and Washington are typically among the top five green-energy producing states. These states have a strong command of renewable energy, excelling at wind and solar generation.

 

Green energy vs. renewable energy vs. conventional power

Green energy and renewable energy often are used interchangeably, but the terms aren’t the same. All green electricity sources of power are renewable, but certain renewable energy sources are not green. For example, burning wood to produce electricity generates carbon dioxide. So, while wood is renewable, many scientists debate whether it is truly green.

Similar arguments can be made about other green energy sources. Solar and wind energy are often considered the best renewable energy; however, both aren’t necessarily green. Solar panel materials and manufacturing produce waste. Wind turbine blades can stay in landfills long after they’ve been used. Hydro energy can damage the environment by destroying habitats.

However, all renewable energy sources, including biomass, can reduce our dependence on the conventional power supply of fossil fuels such as coal, oil, and natural gas. Here are a few examples of renewable or green energy sources available right now.

 

Geothermal energy

Geothermal energy uses hot water and steam that comes from underground reservoirs. It can reach as far as the magma layer of the earth. Green electricity providers and power plants using this type of energy convert the heat and steam and use it to drive a turbine, which produces electricity.

The U.S. is the world’s largest producer of alternative electricity from geothermal energy. California, Nevada and Utah are some of the top states producing geothermal energy. Texas is also considered an untapped resource when it comes to geothermal. The Energy Information Administration says billions of barrels of water as hot as 200 degrees are produced annually as part of crude oil and natural gas production and could be used in geothermal generation.

Solar energy

Solar energy is a small but growing part of the nation’s energy puzzle, producing 3.3% of the electricity generated in December 2021, the most recent month available from the EIA. Most people have seen solar panels on rooftops or in large solar farms, mostly in rural settings, but few know how they work.

The solar panels act as semiconductors, with positive and negative layers. A conductor attached to both layers creates an electric circuit and turns electrons from sunlight into electricity. Finally, a solar inverter converts direct current into alternating current for residential use.

California, Texas, and Florida generated the most solar electricity in December 2021, at 29.1%, 12.6%, and 8.5%, respectively.

Wind energy

Across the U.S., total wind generation increased almost 25% year over year. Texas, Iowa and Oklahoma lead the nation in wind energy production. However, Texas is responsible for more than 28% of the nation’s electricity generation, which is over three times as much as any other state.

Wind energy, in general, accounts for about 11% of the nation’s energy. Here’s how it happens: Wind causes the huge turbine blades to spin, causing a rotor inside to turn as well. The rotor, in turn, is hooked up to a generator, which turns the motion of the rotor into electricity.

Hydro energy

Electricity generated by hydroelectric projectsaccounts for about 7% of the country’s electricity.Washington, Oregon, and New York are three of the top-producing hydro energy states. However, hydropower fell by as much as 14% in 2021 due to droughts across California and the Pacific Northwest, according to the EIA.

Dams are the key component for this form of green energy. The dams allow hydroelectric plants to channel water through turbines, again feeding generators that turn the kinetic energy into electricity.

Biomass energy

Biomass is organic material from plants and animals. The material can be burned as is or converted to liquid or gas biofuels. Examples of biomass include wood, other plants, and wastes. Wood and ethanol make up the largest energy sources of biomass, which produces about 5% of the country’s energy, with California, Georgia, and Florida as three of the top-producing states.

 

How to get a green energy plan

Renewable energy is part of every Texas energy plan. The percentage of renewable energy can be found on a plan’s Electricity Facts Label. Most retail electric providers in Texas also offer plans with higher percentages of green electricity, including plans that are 100% green.

Some providers are green energy companies that only sell 100% green energy, such as Gexa Energy, Green Mountain Energy, and Chariot Energy.

Green energy plans and programs

Here’s how green energy providers in Texas operate to give their customers access to renewable energy.

Green energy companies like Gexa Energy purchase renewable energy credits (RECs)from alternative energy generators in the amount to offset your energy usage. These renewable energy sources are a combination of wind, solar, hydro, geothermal, and biomass outputs.
The energy you use at your home isn’t from these sources directly, because the power grid is a blend of electricity from all sources (renewable and conventional power sources). However, your green energy provider is purchasing the equivalent amount of energy you use from renewable sources.
If you want to use renewable energy directly at your home, having a solar panel system at your residence is a popular choice. Otherwise, your electricity will be a blend of sources.

Get a green energy plan

Uncertain of how to proceed? That’s understandable, given that there are different term lengths and options to purchase no-deposit or prepaid plans. Our buying guide offers useful tips on how to decide on a plan. Check out our green electricity rates page for more information on purchasing a green energy plan.

 

 


 

 

Source SaveOnEnergy.com

 

Edible insects that started as garage experiments may be sold in Aldi

Edible insects that started as garage experiments may be sold in Aldi

Aldi bosses are considering selling edible insects after being impressed by a small business that sells insect recipe kits.

The supermarket giant met with Aaron Thomas and Leo Taylor of Yum Bug, who appeared on Channel 4’s new programme Aldi’s Next Big Thing on Thursday night (21 October).

Yum Bug aims to introduce edible insects, such as crickets, to the wider British population as a nutritious and sustainable food source.

The brand has been endorsed by The Great British Bake Off judge Prue Leith, who has long advocated eating crickets and mealworms as more environmentally friendly protein alternatives.

 

 

The hopeful duo said they began their journey as insect connoisseurs about five years ago and have been working to bring bug-eating into the mainstream since.

Speaking on the show, Taylor said: “Aaron and I have been cooking with insects for years – it started in 2017 with weekends experimenting out of my parents’ garage, cooking up all sorts of recipes and posting content online.

“We then sold our first insect recipe boxes out of our bedrooms in lockdown, and that’s really where everything snowballed.”

Thomas added: “We’re on a mission to change perceptions of insects as food; they’re one of the most sustainable protein sources in the world.

“Crickets are up to 70 per cent protein, which is three times the amount of protein found in beef. They’re also got more iron than spinach, more calcium than milk, and the list keeps going. They are an incredible superfood.

“We want to take bug consumption mainstream. If we’re able to get in front of Aldi’s audience, that would be an amazing opportunity.”

Yum Bug’s offering includes Roasted Crickets and Yum Bug Mince, as well as recipe kits such as Sticky Teriyaki Cricket Stir Fry and Smoky BBQ Cricket Tacos.

If the pair succeed, Aldi shoppers could soon see their insect-filled products on the shelves.

However, Aldi would not be the first supermarket to sell edible insects. In 2018, Sainsbury’s took the title when it began stocking Eat Grub’s Smokey BBQ Crunchy Roasted Crickets for £1.50 per bag.

 

 


 

 

Source The Independent

 

Solar Foods wants to replace industrial animal farming with a high-tech protein harvest

Solar Foods wants to replace industrial animal farming with a high-tech protein harvest

Fermentation has a long, rich history in food production, from beer and wine to yogurt and cheese, leavened bread and coffee, miso and tempeh, sauerkraut and kimchi, to name just a few of the tasty things we can consume thanks to a chemical process thought to date back to the Neolithic period. But if this 2017-founded Finnish startup, Solar Foods, has its way, fermentation could have a very special place in the future of human food too.

The industrial biotech startup is working on bringing a novel protein to market — one it says will offer a nutritious, sustainable alternative to animal-derived proteins. The product, a single-cell protein it’s branding Solein, is essentially an edible bacteria; a single-cell microbe grown using gas fermentation. Or, put another way, they’re harvesting edible calories from hydrogen-oxyidizing microbes.

“Technically it’s like a brewery,” explains CEO and co-founder Dr. Pasi Vainikka in an interview with TechCrunch. “Like fermentation technologies are. It’s not that strange [a process] — there is this one difference, which is the feedstock.”

The production of Solein requires just a handful of ‘ingredients’: Air, water and energy (electricity) — which means there’s no need for vast tracts of agricultural land to be given out to making this future foodstuff. It could be produced in factories located in remote areas or inside cities and urban centers.

Nor indeed are other foods needed to feed it to create an adequate yield, as is the case with rearing livestock for human consumption. So the promise looks immense. (As Vainikka argues: “Land use and energy use are the two main problems of human kind — and the rest follows from these two.)

Nutritionally speaking, Solein resembles some existing foodstuffs — sitting between dried meat, dried carrot or dried soy in terms of the blend of vitamins, amino acids, proteins (overall, it’s 65% protein), per Vainikka. “So it’s very familiar but it’s a bit [of a] new combination,” he suggests, adding: “The taste is very mild, very neutral.” (A mild taste may not sound especially scintillating for the tastebuds but it means it’s easy to include as an ingredient in a wide range of foods without the need for a strong flavor to be masked.)

While Solar Foods has essentially discovered a new species through its fermentation process, the microbe itself obviously hasn’t just appeared on planet Earth — and is likely very ancient; perhaps even hundreds of millions of years old. So there’s a fascinating blend of old and new coming together in the startup’s bioreactor.

Why is finding new forms of protein important? The problem Solar Foods is aiming to tackle is that the environmental costs of livestock-based meat production are indisputably massive — whether you’re talking unsustainable land and water use; climate-heating emissions and pollution; or animal welfare concerns. But what if you could produce billions of nutritious meals without the need to deforest huge swathes of land and slaughter masses of livestock to produce the food? What if humanity could feed itself and stop consuming the planet in the process?

That’s the promise and the core differentiator that Solar Foods claims vs. animal-derived proteins.

If you compare Solein to the growing gaggle of plant-based meat alternatives, they do still rely upon land being farmed to produce the necessary plants — whether soy or pea or oat, etc. — that form the basis of their products. Although they need far less land than meat production requires so the environment upside is still very real. But Solar Foods sees itself blending into this competitive mix — selling Solein to companies producing plant-based foods as another ingredient they can use to cook up nutritious, environmentally friendly meals.

“Cereals, vegetables, fruits, herbs aren’t going anywhere,” says Vainikka, discussing how Solein might fit into an evolved food production system. “So if we go back to the original problem — 80% of all the problems that have to do with food, whether it’s loss of natural habitat or forest loss or whatever, has to do with the industrialized animal production … So actually Solein could solve 80% of the problem but 20% of the calories because mostly we are, on a calorie basis, eating carbohydrates.”

And if you’re excited about the promise of lab-grown meat — which is also seeking to delink protein production from land use — Vainikka says the startup is supportive of such efforts since, once again, it’s spying potential customers as he says cultivated/lab-grown meat producers could use Solein to feed the cell cultures they’re using to grow slaughter-free steaks.

So use cases for Solar Foods’ edible bacteria look broad, provided people are willing to eat it (or have it fed to something in their food chain). Conceivably it could even be used as a feedstock for livestock — although the startup’s messaging is focused on the need to transform a broken food system and enter “the era of sustainable food production,” as its website puts it.

It is also working on developing a closed-loop system in which the sole byproduct of its production process — water containing bits of the Solein protein — would be continuously recycled back into production of more of the foodstuff. And if it can pull that off, the edible bacteria could potentially function as a life support system for humans on space missions where the timescales are too long for astronauts to rely on food supplies brought with them from Earth (such as, for example, a mission to Mars).

“The specific thing that we think is different in what we’re doing — compared to anything else on the market today — is that we don’t use any agriculture in the foods,” Vainikka tells TechCrunch. “Electricity and carbon dioxide are the main ingredients — instead of sunlight and carbohydrates or oils. So that’s the fundamental point where the disconnection of food production from agriculture happens.

“That’s our thing. And the reason to do that is once you can delink the connection between use of land and land-use impacts and food production then basically all the environmental benefits fall on your lap that there can be in relation to food production.”

Down here on Earth, being able to unhitch food production from the vagaries of seasonal weather and other factors that can have major impacts on agricultural yields — such as pests, natural disasters, issues with supply chains specific to farming and so on — is another touted advantage for Solar Foods’ approach. “Security of supply … consistency and quality,” says Vainikka, checking off some of the added advantages he says the edible protein offers vs. traditional farming, i.e., on top of the massive heap of land-delinking-based environmental gains which could — for example — support a mass reforestation of farm land, promoting biodiversity and fighting global warming since trees suck up CO2.

Europe’s energy crisis bites

Solein looks like a no-brainer on the environmental front. But one key component of its production — energy, i.e., electricity — is facing supply issues of its own in Europe at present in the wake of Russia’s invasion of Ukraine. (Russia being a major but unreliable supplier of gas to Europe.)

Solar Foods’ long-term bet is on energy production costs being brought down (or, well, stabilized) by widespread access to cheap renewables — such as wind and hydro energy in the north of Europe and solar in the sunny south. Thing is, for now, the European energy markets are typically structured so that the wholesale price of energy is linked to the cost of the most expensive type of energy (fossil fuel derived) despite there already being a fair amount of renewable energy available which is far cheaper to produce. (Hence why if the price of gas goes up the wholesale price of energy rises, and the bill payer must pay more even if their energy supplier sources their energy from cheaper to produce renewable sources.)

Since the Ukraine war started, Europe has been facing an exacerbated supply vs. demand issue. And over the past several months it’s been hard for Europeans to escape energy price spikes as their governments have sought to reduce reliance on Russian gas imports — shrinking energy supply options and helping keep war-spiked wholesale prices high.

The coming winter looks very grim, with Russia recently electing to entirely shutter gas exports via its Nord Stream pipeline to Germany in what looks like an attempt to weaken Western support for the pro-Ukraine sanctions. So energy supply in Europe has become a weapon of economic war.

It’s an incredibly volatile situation but one thing is clear: Europe’s ‘competitive’ marginal-cost-based energy markets are in desperate need of structural reform — to reflect the cheaper production costs of renewables and ensure consumers and businesses aren’t at the mercy of fossil fuel volatility and cripplingly high prices linked to Russian aggression.

But, in the meanwhile, with electricity being a key component of Solar Foods’ process, the startup is having to manage what Vainikka — who has a background in energy economics that he says allows him to understand where the markets are headed — refers to with classic Nordic understatement as “turbulence.”

 

He suggests Solar Foods may therefore need to wait out the current energy crisis before it’s able to scale commercial production of Solein in a way that’s economically viable — though it’s banking on Europe being able to find a way through to more stable electricity prices in the not too distant future. (In recent days, the Commission has said it will be coming with an emergency reform plan to curb energy prices — both in the short term and over the longer run, to ensure prices reflect cheaper renewables.)

“At the moment we shouldn’t make electricity supply agreements for our factory. We can’t be on the market today to make those agreements,” confirms Vainikka. “Because of this [energy price volatility] — it’s a fact. The second [thing] is we are quite happy that we are not fermenting natural gas — we are fermenting electricity. So we have an opportunity to make a good deal after turbulence.”

“We need to replace fossil fuels with electricity so we need a lot of new generation capacity which is also a problem in the market but we’re confident that this works,” he adds. “Unfortunately there is this turbulence now.”

Solar Foods is pressing on regardless of the current energy crisis.

It’s in the process of building its first factory — actually a demo facility, as a step on the road to future commercial scaling up of Solein production — at a cost of around €40 million, drawing on backing from a number of VC funds since 2017, over seed and Series A rounds, as well as raising debt financing (such as €15 million from Danske Bank Growth earlier this year).

The demo facility at least won’t have major energy requirements to run. (Although he says it’s still holding off on signing an energy supply contract for now.)

“We’ll manage the turbulence but of course it would be better for it not to continue too long,” says Vainikka. “We’re using this demo [facility] operated by one wind turbine to prove that this scales — but the real factories would be 100x larger in terms of energy use, 50x larger — and it would need rather 50 turbines to run a huge facility that will produce half a billion meals. Then you must get a good [energy supply] contract and if we were investing into that factory now it might be postponed because of the turbulence.”

Good food and food for good?

With the demo factory set to come on stream in 2023, Solar Foods’ hope is the first consumer product containing Solein will be on the market by the end of next year (or, failing that, in early 2024). Which global market will get the first commercial taste of the novel protein will depend on regulatory clearances.

Solar Foods has applied for clearance in multiple jurisdictions but can’t predict whether regulators in Europe or the U.S. or Asia will be first with approval, given variances in this process. (But Vainikka says it’s possible the first clearance could happen this year.)

What the first product for sale to consumers that contains Solein will be also isn’t yet clear.

Vainikka suggests a few possibilities — such as that it could be added to existing foods like breakfast cereals or vegan meals for fortification purposes (owing to its vitamin and mineral content, such as iron and B vitamins); or as a main ingredient in plant-based meat replacement products, replacing stuff like pea protein. Or he says it could be used as an egg replacement in pasta or pastry production. Or as a principle ingredient in ice cream or yogurt (or even to make a spreadable faux cheese).

“We leave the final formulation and product development for our customers so that we can empower them to renew categories,” he suggests. “And make having a food an act for good.”

“Frankly as a company we think that it might be a good idea to focus on what we master — which is this conversion-fermentation; producing this ingredient and so that it would have the functionalities needed for food products,” he continues, expanding on Solar Foods’ decision to stay in its biotech lane. “There are so many, so huge, or so experienced or so old [food] companies on the market who have already access to the consumer, all the experience regarding textures, product development regarding all kinds of plant-based ingredients and so on. So when we introduce Solein into the market you would not only need to get everything right, what we are doing and mastering now, but also the final product — of course taste and texture is decisive.”

“So that’s a heavy investment program that we’ve dived into,” he adds, emphasizing the still extensive range of requirements for developing a product that’s designed even to be an ingredient in processed foods that people eat.

“Nutrition must be there … then second is safety, then functionality, of course — how it works and forms texture — and then scaling and production technology; who has it, how does it work, is it scalable, and how does the supply chain work — so who’s really the gatekeeper? So this we are in the middle of now … A lot will happen in the next 12-16 months.”

While Solar Foods won’t be a food product maker itself it does have an R&D lab where it carries out culinary experiments with its product — and images on its website show a selection of demo foodstuffs, from chicken-style chunks served with pasta to soup, bread and a breakfast smoothies, all with a distinctive rich yellow hue.

In its refined form — i.e., after it’s passed through Solar Foods’ electrolyzing and fermenting bioreactors and been dried — Solein takes the form of a yellow powder (the hue is down to betacarotene it naturally contains).

 

The strong color makes it looks a bit like a custom blend of turmeric and cumin. But tastewise it’s nothing like that strong. Per Vainikka, one expert taster who sampled it suggested it was akin to dried carrot. But whether you’re a fan of carrots is beside the point; he emphasizes that the taste is mild enough that it can be easily masked in whatever food product it was being incorporated into — just without the added nutrients going anywhere.

For example, in the sample case of adding Solein to pasta, Vainikka says it would — nutritionally speaking — be akin to eating, say, a plate of spaghetti bolognese with all the nourishment derived from an animal-based ingredient but without the need to have any minced meat on the plate. Which, well, might take some swallowing for those used to consuming traditional (and oftentimes culturally significant) recipes. (An Italian I described this meatless but nutritionally meat-like pasta dish to at a dinner party I attended recently was visibly shocked at the prospect and a second Italian she started to explain the concept to responded by suggesting we should focus on having fun eating the actual food on our plates instead of talking about, er, such high-concept stuff, so, well, there may be some acceptance humps in the short term.)

But as plant-based faux meats advance in taste and texture it’s easy to envisage creative food producers being able to whip up something that has a meat-like taste and texture and — thanks to the addition of Solein — is also imbued with similar levels of protein, iron and vitamins as actual meat. And that could be a strong selling point for consumers, especially with the current food fad for high-protein eating.

Other food ideas Solar Foods has been experimenting with in its labs are ‘cheese’ ball lollypops, mayonnaises and dressings, pancakes and plenty more besides.

Vainikka says he hopes the first commercial food to contain the ingredient won’t be a burger — since there are so many meat-alternative patty options out there already. But he suggests it could be a “meat-like bite” — something akin to a nugget — such as might be be served in an Asian hot pot or similar. “Then yogurt, ice cream, soup, bakery pastry application is something that might go first,” he postulates.

“You could imagine it could be a frozen food, fresh or even on the street kitchen of an Asian city,” he also suggests, saying the startup is keen to branch out and “appreciate different food cultures on the planet” — so it can “try to explain how Solein could be an ingredient in different kinds of dishes from the Asian hot pots to burger patties to soups or pastries or whatever.”

Food is of course not only cultural but individual tastes can be hugely personal — and/or political. So once Solein leaves Solar Foods’ factories and arrives in customers’ commercial kitchens that’s where all these localizing product and branding challenges will really kick in — as buyers will have to work on figuring out how best to blend it in with other taste and cultural considerations or indeed make its presence stick out loudly (at least on the packet) where shouting about sustainability benefits might be the best way to reap big sales in their particular target market.

One thing looks clear: The future of food won’t be dull — or even uniformly yellow hued. A full rainbow of possibilities for alternative eats are coming down the pipe — and the environmental challenges we face, as a species, demand we find the appetite to consume them.


Source Join Techcrunch+

Crab and lobster shells could be used to make renewable batteries

Crab and lobster shells could be used to make renewable batteries

Scientists want to use a chemical found in crab and lobster shells to make batteries more sustainable, according to research.

“We think both biodegradability of material, or environmental impact, and the performance of the batteries are important for a product, which has the potential to be commercialised,” said Liangbing Hu, the director of the University of Maryland’s Center for Materials Innovation and lead author of the paper, published in the journal Matter.

As the world transitions towards deploying green energy solutions and electric vehicles, the batteries being used for such technology also need to be eco-friendly.

But the chemicals used in conventional batteries such as lithium-ion can take hundreds or thousands of years to break down. These chemicals are also often corrosive and flammable. In some cases consumer-gadget batteries have caught fire on aircrafts, or caused fires in waste and recycling sites.

The researchers in Maryland have developed batteries that use a product derived from crustacean shells to store energy.

 

Crustaceans such as crabs, shrimps and lobsters have exoskeletons made of cells that contain chitin, a polysaccharide that makes their shells hard and resistant. Photograph: Eric Risberg/AP

 

Crustaceans such as crabs, shrimps and lobsters have exoskeletons made of cells that contain chitin, a kind of polysaccharide that makes their shells hard and resistant. This valuable material is abundant in nature and can also be found in fungi and insects, but is usually thrown away as food waste from restaurants and a byproduct of the food industry. Scientists have long been researching its various applications – in biomedical engineering, for example, for wound dressing as well as anti-inflammatory treatments – and now, electrical engineering.

Through chemical processing and adding acetic acid aqueous solution, chitin can ultimately be synthesized into a firm gel membrane and used as an electrolyte for a battery. An electrolyte is the liquid, paste, or gel inside a battery that helps ions – charged molecules – travel between one end and the other of a battery, allowing it to store energy.

By combining this chitosan electrolyte with zinc, a naturally occurring metal increasingly used to make batteries that are cheap and safe, Hu’s team was able to create a renewable battery.

The battery is 99.7% energy efficient even after 1,000 battery cycles, which is about 400 hours. This means they can be quickly charged and discharged without significantly affecting their performance. “It is not an easy thing for batteries to operate at high current density. The displayed performance suggests the merit of chitosan-based material in this work,” said Hu.

 

The batteries are not flammable and the two-thirds of the battery made of chitosan can break down in soil thanks to microbial degradation in just five months, leaving behind recyclable zinc. Antonio J Fernández Romero, a professor of material sciences for energy production at the University of Cartagena in Spain, who was not involved in the study, said these were “outstanding properties”.

He said: “The design of new batteries that are respectful of the environment, cheap and producing high discharge capacity, is one of the more important items that must be developed in the coming years.” He added that biodegradability was key, and at this level the system seemed to work very well but it would have to be tested on a larger scale and under commercial use conditions.

The design may pave the way for developing high-performance and sustainable batteries for green energy storage, according to Hu and the study authors.

“When you develop new materials for battery technologies there tends to be a significant gap between promising lab results and a demonstrable and scalable technology,” said Graham Newton, a professor of materials chemistry at the University of Nottingham, who was not involved in the study. He is an expert in sustainable batteries and researches how they can be improved.

So far, according to Newton, the chitosan-zinc battery results are promising. “There are some examples of batteries like this that have been commercialized and are being trialed as stationary energy storage systems,” said Newton. “There are still quite a few challenges to be met in the development of zinc ion batteries, but fundamental studies such as this are hugely important.”

 


 

Source  The Guardian News