Search for any green Service

Find green products from around the world in one place

A very Finnish thing’: Big sand battery to store wind and solar energy using crushed soapstone

A very Finnish thing’: Big sand battery to store wind and solar energy using crushed soapstone

The battery will be able to store a week’s heat demand in winter – how does it work?

A huge sand battery is set to slash the carbon emissions of a Finnish town.

The industrial-scale storage unit in Pornainen, southern Finland, will be the world’s biggest sand battery when it comes online within a year.

Capable of storing 100 MWh of thermal energy from solar and wind sources, it will enable residents to eliminate oil from their district heating network, helping to cut emissions by nearly 70 percent.

“It’s exciting to build a large-scale thermal energy storage, which will also act as a primary production plant in Pornainen’s district heating network,” says Liisa Naskali, COO at Polar Night Energy, the company behind the innovation.

“This is a significant step in scaling up the sand battery technology.”

 

Sand batteries are getting bigger in Finland

The new 1 MW sand battery has a precursor. In May 2022, Polar Night Energy rigged a smaller design to a power station in Kankaanpää town.

Launched just as Russia cut off gas supplies in retaliation for Finland joining NATO, the project was a timely example of how renewable energy could be harnessed in a new way.

Euronews Green previously spoke to the young Finnish founders, Tommi Eronen and Markku Ylönen, who engineered the technology.

“We were talking about how – if we had the liberty to design a community for ourselves – how could we solve the energy problem in such a confined environment?” Markku said of the inspiration behind Polar Night Energy in 2018.

“Then quite quickly, especially here in the north, you run into the problem of energy storage if you’re trying to produce the energy as cleanly as possible.”

The friends started playing around with ideas, landing on sand as an affordable way to store the plentiful electricity generated when the sun is shining, or the wind blowing at a high rate.

Finding a way to store these variable renewables is the crux of unleashing their full potential. Lithium batteries work well for specific applications, explains Markku, but aside from their environmental issues and expense, they cannot take in a huge amount of energy.

Grains of sand, it turns out, are surprisingly roomy when it comes to energy storage.

The sand battery in Pornainen will be around 10 times larger than the one still in operation at Vatajankoski power plant in Kankaanpää. The start-up also previously connected a pilot plant to the district heating network of Tampere city.

 

So how do sand batteries work exactly?

It’s quite a simple structure to begin with, Polar Night Energy said of its prototype. A tall tower is filled with low-grade sand and charged up with the heat from excess solar and wind electricity.

This works by a process called resistive heating, whereby heat is generated through the friction created when an electrical current passes through any material that is not a superconductor. The hot air is then circulated in the container through a heat exchanger.

The sand can store heat at around 500C for several days to even months, providing a valuable store of cheaper energy during the winter. When needed, the battery discharges the hot air – warming water in the district heating network. Homes, offices and even the local swimming pool all benefit in Kankaanpää, for example.

“There’s really nothing fancy there,” Markku says of the storage. “The complex part happens on the computer; we need to know how the energy, or heat, moves inside the storage, so that we know all the time how much is available and at what rate we can discharge and charge.”

 

How will the sand battery serve residents in Pornainen?

Having refined its charging algorithms, Polar Night Energy is now ready to scale up the storage tech in Pornainen.

Once completed, the new battery will be integrated with the network of Loviisan Lämpö, the Finnish heating company that supplies district heating in the area.

“Loviisan Lämpö is moving towards more environmentally friendly energy production. With the Sand Battery, we can significantly reduce energy produced by combustion and completely eliminate the use of oil,” says CEO Mikko Paajanen.

The project also aligns with Pornainen’s plans for carbon neutrality. Many of its buildings, including the comprehensive school, town hall, and library, rely on district heating.

Mayor of Pornainen Antti Kuusela says the municipality “welcomes all innovative development projects that reduce emissions in district heating operations and contribute to network expansion.”

In total, the sand battery is expected to knock off 160 tonnes of carbon dioxide equivalent emissions per year. As well as weaning the town off oil, woodchip burning is expected to drop by 60 per cent as a result.

The battery’s thermal energy storage capacity equates to almost one month’s heat demand in summer and a one-week demand in winter in Pornainen, Polar Night Energy says.

Construction and testing of the 13 metres high by 15 metres wide battery is estimated to take around 13 months, meaning it should be keeping residents warm well before winter 2025.

 

Is sand a sustainable material?

“We wanted to find something that can be sourced nearly everywhere in the world,” Markku said. But is sand as ubiquitous as we might think?

Demand for the construction material is set to soar by 45 per cent in the next 40 years, according to a recent Dutch study. Building sand is typically extracted from rivers and lakes, and ‘sand pirates’ are speeding up its loss from these ecosystems.

But as far as the Finnish engineers are concerned, it doesn’t really matter where the sand comes from. Though builders’ sand was used initially (to limit transport emissions), sand batteries work with any sand-like material that has a high enough density, within certain thermodynamic parameters.

In Pornainen, Polar Night Energy has found a sustainable material in crushed soapstone; a by-product of a Finnish company’s manufacture of heat-retaining fireplaces.

“Tulikivi is a well-known and traditional company,” says Naskali. “The soapstone they use is a very Finnish thing.”

“We always choose the thermal energy storage medium based on the customer’s needs. Examining and testing different materials is crucial for us to use materials that are suitable in terms of properties, cost-effectiveness, and promotion of circular economy,” she adds.

Polar Night Energy has big ambitions to take its technology worldwide.

As Markku told us back in 2022, “we want to build a hundred times larger storages around the world as fast as possible.”

 

 


 

 

Source  euronews.green

Aquifer Thermal Energy Storage for Renewables

Aquifer Thermal Energy Storage for Renewables

It’s Not All About Energy Generation

When the topic of decarbonization comes up, oftentimes, we think of transportation or energy generation. These issues are important, as vehicle emissions are a major problem, as well as emissions from fossil fuel power generation. However, while important, these issues only partially show the roadblocks to moving towards a green future.

Another component that needs to be addressed in the conversation is energy storage and efficiency in renewable energy.

Wind and solar energy are important and rapidly developing technologies but are dependent on weather conditions that vary from month to month and from year to year. In colder months, when houses need to heat, that is when significantly less sunlight is present, thus driving down the available energy to heat them.

This is why energy storage is crucial to the conversation regarding renewable energy, but other solutions might mitigate this problem if properly implemented. This is how aquifer thermal energy storage (ATES) could help assist in cooling and heating buildings, reducing the reliance on other renewable energy sources.

How About Aquifer Thermal Energy Storage?

Energy storage is a difficult topic to address, as the technologies required to implement large-scale grid energy storage require, ironically, a lot of energy. This isn’t helped by the fact that hydrogen energy storage systems right now lose a significant amount of the energy stored.

This is why reducing the grid energy demand is important to implement renewable energy systems successfully. Aquifer thermal energy storage is an interesting form of renewable energy specific to the heating and cooling of buildings because it ties in directly with the seasons that affect solar energy so much.

It works by utilizing two wells connected to the same groundwater reservoir. Cold groundwater is pumped up to cool the building during the summer, then stored. The same process happens in winter but in reverse. Warm groundwater is pumped up into the building, then stored.

Aquifer thermal energy storage systems can also store excess heat from industrial operations, similar to the geothermal systems being deployed in decommissioned oil wells. This process can help bridge the gap between the seasonal availability of renewable energy while at the same time decarbonizing the heating and cooling sector.

This system is also useful because it can make energy infrastructure more resilient by reducing the demand currently placed upon it by heating and cooling. According to a study in Science Direct, Aquifer thermal energy storage systems could reduce reliance on fossil fuels for energy by up to 40%.

New Tech can Help but not Solve Inherent Limits

The importance of renewable energy in the transition to a greener world cannot be understated. However, it is also important to recognize that there are limitations to the technology currently available.

Going forward, there are certainly ways that renewable energy, specifically solar, can become more efficient; the issue of seasonal availability will always be there. This is why alternative methods of addressing needs like heating and cooling are as important.

The issue of energy storage is also important because bridging the gap between availability and need is necessary for making renewable energy a viable alternative to our current fossil fuel energy generation system.

 

 

 


 

 

 

Source Happy Eco News

 

Plans in the works for UK’s first lithium refinery and largest battery recycling facility

Plans in the works for UK’s first lithium refinery and largest battery recycling facility

Business Secretary Grant Shapps has been in the North East today (7 November) for both of the announcements, made by Green Lithium and Altiluim respectively.

Green Lithium has announced that Teesport, Middlesborough, will be the location for its refinery. The facility will provide materials to industries such as automotive, energy storage and consumer technology. It will employ around 1,000 people during the construction phase and 250 in its operations.

 

 

The UK Government has provided Green Lithium with more than £600,000 of grant funding for its work, in a bid to ensure that the UK remains competitive as the net-zero transition continues, and to help make supply chains more resilient. 89% of the world’s lithium processing currently takes place in East Asia.

Shapps said: “We know that geopolitical threats and global events beyond our control can severely impact the supply of key components that could delay the rollout of electric vehicles in the UK.”

Green Lithium has stated that the proposed facility will produce 50,000 tonnes of battery-grade lithium each year once it enters full operations. It wants to begin production in 2025. The firm takes its name from the fact that its refining process claims to produce 80% less greenhouse gas emissions.

 

Battery recycling

Green Lithium’s plan, in the long-term, is to co-locate the refinery with battery recycling capacity.

In related news, cleantech start-up Altilium has announced plans to build the UK’s “largest planned recycling facility” for electric vehicle batteries after the Government confirmed a total of £3m of grant funding.

A decision for the final location of the plant will be made in 2023, the company has stated, and an 18-month construction period is envisioned. As such, it is aiming for a 2025 start-date for production.

Altilium has stated that Teesside’s status as a freeport, the support of local authorities and the fact that there are skilled workers in chemical processing in the region were all key factors in its decision on location.

Just last week, Britishvolt, which is currently constructing a gigafactory for car batteries near Blyth, avoided collapse by securing £1.7bn of additional funding. The gigafactory is now set to open in the last half of 2025. The firm blamed “difficult external economic headwinds including rampant inflation and rising interest rates,” for its challenges.

 


 

Source edie

Ocean Battery stores renewable energy at the bottom of the sea

Ocean Battery stores renewable energy at the bottom of the sea

As useful as renewable energy sources are, they need to be backed up by storage systems that hold energy for times when the Sun isn’t shining or the wind isn’t blowing. Ocean Battery is a new design for an energy storage system that functions a bit like a hydroelectric dam at the bottom of the sea.

 

 

 

 

 

 

 

 

 

 

 

 

 

Developed by Dutch startup Ocean Grazer, the Ocean Battery is designed to be installed on the seafloor near offshore renewable energy generators, like wind turbines, floating solar farms, tidal and wave energy systems. It is made up of three components that together function on a principle similar to that of a hydro dam.

 

 

 

 

 

 

 

 

 

 

 

 

Buried in the seabed is a concrete reservoir that holds up to 20 million liters (5.3 million gal) of fresh water, stored at low pressure. A system of pumps and turbines connects this reservoir to a flexible bladder on the seafloor. Excess electricity from the renewable sources can be used to pump water from the reservoir into the bladder. When the energy is needed, the bladder releases and, driven by the pressure of the seawater above it, squeezes its water back down to the reservoir, spinning turbines on the way to generate electricity that’s fed out into the grid.

 

A diagram of the Ocean Battery system. When charged (left), the bladder is full of water and the concrete reservoir is empty. When the battery is discharged (right), the bladder is empty and the reservoir full.Ocean Grazer

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Ocean Grazer team says that the system has an efficiency of between 70 and 80 percent, and should be able to run an unlimited number of cycles over an operation lifetime of more than 20 years. It’s also fairly scalable – each concrete reservoir has a capacity of 10 MWh, so adding more of these can increase the overall capacity. Extra units of the pump and turbine machinery can also be added to boost the power output, if more energy is needed quickly.

 

 

 

The Ocean Battery concept is intriguing, but it’s far from the only ocean battery design in the works. Subhydro outlined a similar idea to pump seawater out of tanks placed at the bottom of the sea, then when electricity is needed the water is let it back in, spinning turbines as it fills the tank. MIT also described a similar concept using hollow concrete spheres. Another recent design worked off buoyancy, using electricity to drag and hold balloon-like containers underwater, then releasing them to generate electricity.

Still, there’s not going to be one solution that suits every situation, so solving a global problem like renewable energy storage is likely going to take a whole army of these different, creative ideas.

 


 

Source New Atlas