Search for any green Service

Find green products from around the world in one place

Absolut Vodka in Paper Bottles

Absolut Vodka in Paper Bottles

Over 50 years ago, we were introduced to the concept of box wine – a wine that came in a box with a collapsible bag inside. The invention gained popularity because it was cheaper than other wines and spirits. Adding the integral tap in the bag made it easier to pour a glass of wine and store it. From an environmental standpoint, boxed wine is recyclable and easier to transport. Although glass is recyclable, it requires a lot of energy to produce and transport.

Switching to cardboard is less energy-intensive to produce and is a lot lighter in comparison to transport. Although boxed wine has been associated with being a cheaper quality wine, the quality has improved significantly over the years, with many winemakers packaging their products in boxes.

If wine can be packaged more sustainably, what about other types of alcohol? Swedish company Absolut Vodka wants to switch from glass bottles to paper bottles. As part of a pilot project, Absolut has made bottles out of 57% wood fibres certified by the Forest Stewardship Council. To prevent the liquid from leaking through, the bottles contain an integrated moisture barrier made from recycled plastic.

This pilot project is part of a collaboration with Paboco and the Pioneer Community. Paboco is a paper bottle company working towards creating the world’s first 100% bio-based and recyclable paper bottle. The paper bottle is recyclable as paper packaging and can be designed to hold many different products, from soda to sun location. The company has partnered with L’Oreal, the Coca-Cola Company, Procter & Gamble and many others to help introduce smarter and more sustainable packaging solutions into more significant markets.

Paboco is no stranger to packaging alcohol in paper bottles. They have been successful with beer company Carlsberg with their Fibre Bottle, made out of plant-based PEF polymer lining. The material is compatible with plastic recycling systems and can degrade in nature. The PEF, which is made out of natural raw materials, protects the taste and fizziness of the beer, and the outer shell helps to keep the beer colder for longer compared to cans or glass bottles.

Absolut Vodka has been testing these paper bottles for over a decade, and they are finally launching 500-millilitre paper bottles in select Tesco stores in Manchester, in the UK. The city of Manchester was chosen as a testing site because it had the recycling infrastructure to handle the bottles. Absolut also found that Manchester had higher household recycling rates than any other region in the UK.

Much like how wine boxes are lighter and less energy-intensive to transport, Absolut will calculate the carbon footprint of the paper bottles, which will be significantly lighter than their traditional glass bottles. The company is also collecting feedback from consumers, retailers and distributors and will use their findings to make necessary adjustments. They will also be working on developing ways to make the bottles from more than 57% paper and achieve a 100% paper bottle target.

While glass is a better option and can be used infinitely, compared to plastic bottles, it is pretty costly to recycle. Glass can only be recycled in furnaces that use high energy to reach high heat, increasing pollution. The switch to paper bottles could have a significant impact on the emission that comes from the food and drink industry. While Absolut Vodka is only one of many alcohol companies, it could be the inspiration needed to make the switch. We might see our liquor stores go from clanky, heavy glass bottles to lightweight paper ones in the near future.

 

 


 

 

Source  Happy Eco News

Water Based Battery Safer than Lithium

Water Based Battery Safer than Lithium

A novel water based battery is said to be safer than lithium at half the cost.
A Boston-area startup called Alsym Energy has introduced a rechargeable water based battery that could match lithium-ion batteries’ performance at a fraction of the price.

In addition to using inexpensive, easily accessible materials like manganese and metal oxide, the novel battery is based on water, according to an initial report from Fast Company.

Being a water based battery means it avoids some of the main drawbacks of current batteries, such as the potential for lithium-ion battery fires and the negative impact of mining on the environment. And thanks to the use of non-toxic materials, the water based battery design is simpler to recycle, which is always a bonus.

Electric vehicles are becoming more important as the world’s nations step up their efforts to decarbonize the grid. That’s because they can aid in decarbonizing both transportation and supply of electricity through reduced tailpipe emissions and offer flexibility. Naturally, many automakers are tapping into the market by producing luxurious EVs; however, the expensive price tag remains to be a problem to this day. The costs are partly due to the lithium-ion batteries that are used in electric vehicles, which are too costly to make EVs that can compete in price tag with cars that run on fossil fuels.

This is where Alsym Energy, which recently emerged from stealth and secured $32 million from investors, comes in. According to a press release, with its first partner being an automaker in India, the startup wants to make it possible for manufacturers to produce cheaper electric vehicles.

“Our motivation was to make it affordable so that it could be widely deployed as opposed to niche,” Mukesh Chatter, CEO and co-founder of the startup, told Fast Company.

The Alsym Energy water based battery is inexpensive enough that it might be used in developing countries to store off-grid solar power. This is especially crucial for individuals who do not currently have access to energy.

 

What Makes the Water Based Battery Special?
The water based zinc battery makes use of other affordable, easily accessible components like manganese and metal oxide. Crucially, it does not contain cobalt, an expensive critical component of lithium batteries that also contributes to supply-chain health and environmental issues due to unethical mining practices. It also doesn’t use lithium at all, which requires resource-intensive salar brine extraction methods, mainly concentrated in conflict-prone regions of South America. Avoiding lithium and cobalt reliance is incredibly important as both metals have seen extreme price increases recently amid surging EV demand.

Lithium carbonate prices have skyrocketed over 750% in the last two years. And cobalt more than doubled in cost since 2020. These unstable dynamics will likely drive up prices of lithium-ion batteries for the foreseeable future. By swapping water for expensive, ethically fraught raw materials, the aqueous zinc batter stands to radically transform the energy storage calculus in terms of affordability, local manufacturing potential, and stability of supply chains.

According to the team behind Alsym Energy, the new design has “lithium-like performance.” But unlike the latter, Alsym Energy’s batteries are not flammable. This saves money as it doesn’t require special protection to avoid fires and gives the batteries additional applications, such as use in ships, where the industry is particularly concerned about fire risk.

If all goes to plan, Alsym Energy will start beta testing with its first customers in early 2023, with high-volume production beginning as early as 2025. The novel battery design will surely make waves globally; however, the company’s priority is to first make it affordable in low-income regions.

 

 


 

 

Source  Happy Eco News

Can You Enjoy a Warmer Winter Without Increasing Your Energy Use?

Can You Enjoy a Warmer Winter Without Increasing Your Energy Use?

Excessive Energy Consumption in Winter

Home heating costs keep soaring yearly, creating a budget concern among American homeowners. In 2022, the National Energy Assistance Directors Association forecasted each home would pay an average of $1,328 for electricity in the winter of 2023 — a 17% increase from the previous year’s power consumption.

Because people need to stay warm and cozy indoors, the heating system operates for nearly 24 hours. While it’s necessary for survival, homeowners are getting more concerned about the rising energy costs and the impact of constantly running appliances on the environment.

So this brings the question, “Is it possible to keep warm and save on bills?” The answer is a big yes — and there are several options to do so. Here are the workarounds to keep your family warm during winter, minus the skyrocketing bills.

 

Maximize Passive Solar Heating

The easiest way to warm your space is to take advantage of the sun. Doing so doesn’t require any complicated upgrades or installations. All you have to do is open your windows during the day to allow warm air inside and improve circulation.

South-facing windows capture the most heat, so don’t block the sun by placing tall plants directly in front of them. In addition, run your ceiling fan counterclockwise direction — it circulates more warm air by pushing it down.

During the night, close the blinds to trap heat indoors. If you can, invest in thermal-lined curtains. They’re made of several layers of fabric and microfiber that provide a wall between your home and the cold outside air.

 

Insulate Various Home Areas

While it’s ideal to boost insulation from the roof to the foundation, such a move requires a considerable financial investment. The average cost of home insulation is between $3,000 and $10,000 for a 2,000-square-foot home.

 

Windows

If you lack the budget, simply insulating your doors and windows is energy-saving and pocket-friendly. Here are some hacks.

1. Put a Plastic Film or Bubble Wrap Over the Window

You can save up to $20 per window every winter by merely putting a film over your window. If you have five windows, you can put a potential extra $100 toward other expenses.

The process to do this is straightforward. Use tape to secure the plastic to the edge of the window frame. Then, fix the film to the window using a hair dryer.

2. Add Caulk and Weatherstripping

It’s easy to add caulk to your windows. Make sure to cut the tip of the tube to the same size as the gap between the wall and the frame. If you have double-hung windows, weatherstrip them with a V seal.

3. Install Cellular or Honeycomb Shades

This solution may be more expensive than the first two, but they can last for years. Installing honeycomb shades can save you as much as 15% of your yearly HVAC energy use. They just take a bit of measuring and drilling.

 

Doors

Weatherstripped doors can also prevent heat loss, warming up your space during winter. Follow these tips to insulate them.

1. Tighten the Screws and Fittings

Check if the doors’ fittings have come loose, which can happen with time. The door must hang appropriately in the frame.

2. Install Weatherproofing Strips and Seals

Self-adhesive strips are the easiest way to seal gaps between the door and the frame. Meanwhile, you can use a weather seal on the bottom of the door.

3. Hang Heavy Curtains on the Entry Doors

At the back of the entry doors, mount a curtain rail on top to hang thick curtains. You can take this down after winter. Remember to do the same for your garage door using rigid foam boards or other similar materials.

 

Use Smart Thermostats

Modern households are becoming technology-driven. By leveraging advancements, you can control energy use. A great example is a thermostat.

Smart thermostats are designed with sensors, algorithms and machine learning capabilities. When sensors detect someone entering the home, the thermostat automatically turns on and adjusts to the occupants’ optimal cooling or heating temperature.

With use, it can remember the best time to heat the home during winter, saving you 8% on heating and cooling bills or $50 per year. They’re also convenient, as you can control them remotely through an app and voice commands in some models.

 

Use Energy-Saving Mode on Appliances

Your choice of entertainment during winter — which may include a TV, game console or computer — can also add up on your bills. Hook them up to a battery saver or turn on low power mode when operating in this setting is possible. For instance, you can turn your laptop into power saver mode if you only do data entry tasks and don’t need the high-resolution video feature. By implementing this simple change, you can save up to $30 a year on energy bills.

 

Switch to LEDs

Lighting accounts for about 15% of your entire home energy use, which is considerable. Swapping to quality LED fixtures will result in huge savings since they use 75% less energy and last more than 20 times longer than incandescent bulbs.

Besides their low energy consumption, LEDs are more durable than traditional lighting. They’re made of epoxy lenses — not glass — increasing their resistance to breakage. More importantly, their longer life span makes them good for the environment, as they emit less carbon.

 

Layer up Indoors

Another simple, sustainable winter practice is to wear warm clothing at home to reduce the need for heating. Wearing thick winter clothes will preserve your body’s natural heat, decreasing your reliance on electricity to warm up. You’ll have to apply the same hack when sleeping — ensure you cover yourself with a layered blanket.

 

Enjoy a Warmer Winter at No Extra Cost

Power bills shoot up during winter due to the extensive use of the heating system. Fortunately, you can enjoy warm, cozy evenings without increasing your energy use by harnessing the sun’s power to heat your home, insulating any openings where heat can leak and switching to a smart thermostat. Save hundreds of dollars yearly using these simple tips to prepare your home for winter.

 

 

 


Source  Happy Eco News

Windcatcher the Huge Wooden Wind Generator

Windcatcher the Huge Wooden Wind Generator

Engineers have designed a new type of gigantic wooden wind generator dubbed the “Windcatcher” that could rise higher than the Eiffel Tower to tap into more powerful winds and generate huge amounts of renewable electricity far offshore.

At 1,066 feet (325 meters) from anchoring base to propeller tip, the proposed Windcatcher wooden wind generator system would surpass the iconic Parisian landmark’s height of 1,063 feet when fully built. But rather than offering tours of city views, this would allow the colossal tower to leverage faster wind speeds at higher altitudes than conventional wind turbines mounted closer to shore. Architects envision groups of these wooden wind generator megastructures with spinning wind turbines dotted along their central shafts, powering entire regions with clean energy.

Winds Tend to Blow Stronger Higher Up

Wind flow is enhanced the higher you go because ground obstacles like hills and buildings cause slowing friction. By elevating up into less disrupted airflow, the Windcatcher’s turbines could rotate 50% faster than ones constructed only 300 feet up. More spin velocity means manyfold more power generation. Modeling shows electricity output from a single Windcatcher could equal several traditional wind towers running in parallel. This boosted productivity per tower could make building fewer giants more efficient than patching seascape views with ever more waves of smaller mills.

Engineering a Gigantic Wooden Wind Generator

However, efficiently scaling turbines to Eiffel defining heights poses profound infrastructure challenges around stability, longevity, and safe maintenance access throughout the multiyear operation. The proposed Windcatcher design incorporates a sturdy yet flexible solid timber tower base tapering into an open skeletal wood frame swirling up to its peak generation capacity. The entire structure can gently sway to dampen extreme gust loads without catastrophic failure risk. Metal vibration dampeners also help absorb wind energy to limit motion.

Ringing the tower’s exterior, helical rampways, and grated platforms circle up to turbine machinery requiring routine inspection or emergency repairs. Cargo lifts and even tilting gondolas mean specialized crews can access any point from base to pinnacle in most conditions while remaining secure. But whatsoever precautions, embarking 1,000 feet into the North Sea gusts to bolt down wayward equipment is no task for the faint of heart.

The wooden wind generator concept has grabbed attention across renewable energy circles, yet experts debate feasibility obstacles around truly enormous timber joinery, massive construction logistics, operating equipment endurance, and connection infrastructure. Building numerous near Eiffel-topping wooden wind generators certainly nudges current offshore wind realism boundaries. However, proponents argue that visionary, clean power goals require expansive thinking, including wooden wind generators. However, intimidating initial steps appear. Our energy appetites will only expand, and every field bears longshot innovations that will later prove pivotal.

The proposal’s futuristic allure is clear. Windcatcher wooden wind generators evoke images of natural organisms gently swaying amid the waves, smoothly converting the wind’s energy into electricity, helping human life flourish onshore. Their sheer epic scale captivates the imagination much akin to Parisian Gustave Eiffel’s original wrought iron icon that long-held records as the world’s tallest manmade structure. Perhaps someday, rows of these block-long towers may claim their own position as ultimate wind energy titans built to sustainably power nations using renewable materials and ingenuity.

 

 


 

 

Source  Happy Eco News

These Maasai women have developed an eco-friendly way to turn invasive cacti into bio-fuel

These Maasai women have developed an eco-friendly way to turn invasive cacti into bio-fuel

In Kenya, Maasai women have found an eco-friendly solution to an invasive and hazardous plant.

Parts of the opuntia cactus are edible, but its outer layers are covered in spikes and harmful to livestock which try to graze on it.

A group of women are now transforming the prickly pear into a bio-gas and preserves.

It is bringing them a form of employment and a method of empowerment.

 

Kenya’s livestock threatened by invasive cactus

The wilderness of Laikipia County, near Nairobi, is home to goats and cattle that roam freely.

They are frequently attracted to grazing on prickly pears, but these are an invasive species which threaten the natural environment.

The cacti were introduced by colonialists in the early 1900s as a natural fence and have morphed into an invasive menace that outcompetes native plants.

Its seed gets widely dispersed by the wind and the animals that pass through.

The hairs which cover the fruit can cause internal obstructions when eaten by animals, posing a significant threat to livestock.

Local farmers say the cactus now competes for critical resources, jeopardising community lands, wildlife reserves and livestock ranches.

Its encroachment also hinders wildlife navigation as well as reducing grazing areas.

Naimadu Siranga, a 65-year-old herder, has witnessed the devastation of the cactus firsthand, leading to the loss of over 150 of his goats and sheep.

“I once maintained a herd of more than 100 goats. Unfortunately, a series of losses ensued when they started consuming cactus plants, which led to mouth injuries, severe diarrhoea, and ultimately, the demise of my livestock,” he says.

“These circumstances have inflicted significant financial setbacks.”

 

Women’s group transforms cacti into bio-fuel

Now a women’s group in Laikipia County is transforming the cacti from a problem into a new enterprise.

They harvest the prickly pear and turn it into biogas which they can use in their homes.

The Iloplei Twala Cultural Manyatta Women Group has 203 members who are now employed in converting the cactus pulp into fuel.

This approach not only eradicates the cactus but also promotes environmental conservation and offers an alternative livelihood for the women.

“We came together because in Maasai culture, women do all the domestic work and own nothing at home,” says Rosemary Nenini, a member of the group, “so we want to empower ourselves.”

The fruits from the cactus are edible for both humans and animals if separated from their sharp spines.

So the Twala women at Laikipia Permaculture are also using the fruit to create a range of products including jams, cosmetics and juices. This generates an independent income for them.

 

Cacti pose a danger to baby elephants

Loisaba Conservancy, a 58,000-acre wildlife habitat in northern Kenya, home to iconic species such as lions and wild dogs, also grapples with the invasive cactus.

Animals unwittingly facilitate the spread of this invasive plant. Baboons, elephants, guinea fowl, and tortoises consume the sweet fruit and disperse the seeds.

However, elephants, while skilled at extracting the fruit from the spiny thorns, sometimes suffer from digestive issues due to the fruit’s small hairs.

“If the elephant is young, the hairs of the fruit can irritate the gut lining, create diarrhoea and sometimes even irritation in the gut,” says Tom Silvester, the Conservancy’s Chief Executive.

Combatting this invasive species proves challenging, as it spreads aggressively, even on barren rock.

Traditional removal methods, like manual labour and burning, have proved ineffective.

Teams now use heavy machinery to uproot the cactus, transferring it to designated areas and burying it in deep pits to minimise carbon emissions during decomposition.

This strategy results in fertile zones where native plants can regenerate and flourish.

As of June 2023, Loisaba Conservancy successfully cleared 3,100 acres of opuntia, marking a significant step in the fight against this environmental menace.

Research scientist Winnie Nunda from the Centre for Agriculture and Bioscience International says it’s a step towards preserving the country’s biodiversity.

 

 


 

 

Source    euronews.green

Recycle Plastic Bags into Oil with New Machine

Recycle Plastic Bags into Oil with New Machine

A Japanese inventor learned how to recycle plastic bags into oil with a new machine.

A Japanese inventor has designed an innovative machine that can recycle plastic bags into oil. 70-year old Akinori Ito created the recycling device to process hard-to-recycle plastic waste into usable fuel.

Ito’s machine shreds plastic bags into flakes and then melts them at high heat, producing an oil liquid similar to light crude. The unconventional recycling method aims to reduce waste while generating income for local communities. The machines come in a variety of sizes, from desktop-sized to community-scale.

“I don’t want this equipment to just be used by major companies. I want it to be used in small towns and villages,” Ito shared.

His compact recycling unit measures around 4.5 meters long by 2.5 meters wide with various control stations. Up to 1 kilogram of plastic bags can be loaded into the shredder per hour.

The shredded plastic is then fed into a hot furnace, melting the material at temperatures up to 430 degrees Celsius. The intense heat decomposes the hydrocarbons and will recycle plastic bags into oil.

Different grades of fuel oil can be created depending on the temperature and components used. Higher heat produces lighter oils akin to diesel or gasoline. The oil can then be sold to buyers as recycled petroleum products.

Japan generates over 9 million tons of plastic waste annually but recycles only 22% of it, government statistics report. The country imports much of its energy and previously recycled most plastics into lower-grade uses like concrete filler. The ability to recycle plastic bags into oil is something that Japan needs.

Motivated by both the waste and energy issues, Ito spent over 20 years perfecting a system to upcycle plastics into usable crude oil.

After testing various methods, the retired electronics engineer pioneered the pressurized hot furnace technique to recycle plastic bags into oil.

“I didn’t expect oil made from plastic bags would be such good quality when I first produced it,” shared Ito. “The quality of oil is high enough to be sold to consumers.”

By selling the oil produced, local groups and municipalities can fund new recycling efforts in a self-sustaining loop. “I hope more people will use the machine in their community,” said Ito.

Several Japanese municipalities have already installed Ito’s invention to process hard-to-recycle plastic films, bags, wrappings, and other waste into oil.

The city of Akita estimates they can convert several hundred kilograms of plastic waste per day into nearly $500 worth of oil. Some groups report producing over 80 liters of oil daily.

But challenges remain in scaling up the niche recycling concept. Collecting sufficient plastic volumes is difficult in smaller towns. Removing ink and labels from plastic bags is an added step. The systems also require maintenance of technical equipment.

Still, supporters believe Ito’s invention provides an important outlet to reduce unrecyclable plastics piling up in Japan and other countries. His machine offers a rare solution for polyethylene films that lack recycling markets globally.

If expanded, systems that recycle plastic bags into oil could reduce environmental and crude oil imports for countries while generating income. With further development, experts envision entire localized supply chains optimizing the plastic-to-fuel concept.

For his innovation, Ito was awarded the Medal of Honor from Japan’s Ministry of Environment in 2018. His persistence in creating a real-world solution also highlights the power of grassroots initiatives to spur change.

Said Ito: “I don’t want my technology to end up sitting on the shelf. I want it to be used practically to help communities.”

 

 


 

 

Source   Happy Eco News

Cement Energy Storage – Two Ways

Cement Energy Storage – Two Ways

Cement, the binding agent in concrete, is the world’s most widely utilized construction material and may soon be used as cement energy storage. However, emerging research reveals its overlooked potential to serve as a cement energy storage medium in two completely different ways: solid thermal batteries and supercapacitors (when combined with carbon).

Cement Blocks as Thermal Batteries

According to an article in the Journal of Composites Science, scientists have developed a method to produce cement-based blocks that effectively function as thermal batteries. Their technique infuses cement blocks with the ability to soak up renewable electricity when manufactured and then discharge it later on demand as usable heat.

The researchers use chemical alterations during the concrete mixing process to integrate phase change materials into the cement binder matrix. These phase-change materials have the ability to store and release thermal energy.

The resulting cement energy storage blocks contain phase change materials that can absorb electricity when it is most abundant and inexpensive from the grid or renewable sources. The charged blocks can then act as solid thermal batteries, releasing their stored energy as heat when needed for space and water heating systems.

In initial tests, the team achieved energy densities comparable to lithium-ion batteries in their cement energy storage-based blocks. This stored energy is emitted as gentle heat when water is added, with adjustable discharge rates. The blocks can offer long-duration energy storage across daily cycles or entire seasons.

By incorporating waste materials like plastic ash during production, the researchers achieved lower costs than conventional concrete blocks or batteries. Additional waste heat captured during block fabrication can provide self-generated power.

The creators say that scale adoption of such cement energy storage thermal batteries could provide renewable energy storage for buildings while lowering grid demand peaks. The cement blocks offer an alternative to mining metals like lithium, cobalt, and nickel, which are finite and environmentally destructive to extract.

This novel approach redirects one of cement’s existing useful properties – its high thermal mass – towards storing renewable energy rather than fossil fuels traditionally used for heat in cement kilns. It points to one-way cement could aid sustainable energy transitions through material innovation.

 

Conductive Cement-Carbon Composites

Researchers at MIT have also demonstrated cement energy storage’s potential as an energy storage medium by transforming it into a highly efficient supercapacitor. Their method infuses cement with carbon-based additives to create cement-derived composites with enhanced conductive properties.

The MIT team found that the resulting material attained supercapacitor-like behaviors by mixing cement with inexpensive carbon black additives. This was due to carbon black creating a conductive surface area network throughout the composite.

With just 3% carbon black content by volume, cement’s conductivity spiked to levels comparable to powerful supercapacitors. The team states that a cement block around 45 cubic meters in size could potentially store up to 10 kilowatt-hours of energy – equal to an average home’s daily usage.

While still experimental, the researchers say these carbon-infused cement energy storage composites could enable integrated energy storage in concrete structures. Walls, foundations, or roadways made with such cement mixtures might capture solar, wind, or waste energy onsite for later usage.

The carbon provides the charge-storing capacity, while ubiquitous cement allows for scalable, inexpensive production since these composites do not rely on scarce materials like lithium or cobalt. Combined, they offer unique advantages as sustainable energy storage solutions.

 

Conclusion

Together, these two emerging techniques demonstrate that one of the planet’s most abundant building materials – cement – can potentially provide flexible, large-scale energy storage as demands grow.

While still in the early stages, both research trajectories showcase cement’s latent abilities to store energy through novel manufacturing processes and composite ingredients. With further advancement, cement energy storaget-based batteries and supercapacitors may offer new tools for enabling greater renewable energy integration across infrastructure. The present global ubiquity of concrete construction means cement-derived energy storage could be rapidly deployable once perfected. Unlocking the hidden attributes of cement through materials science and engineering may yield key innovations to support grids in an electrified, renewable future.

 

 


 

 

Source   Happy Eco News

6 Types of Cool Roof Technology

6 Types of Cool Roof Technology

Cool Roof Technology: a Low-cost Way to Reduce Energy Consumption and Carbon Emissions

Want a huge decrease in carbon emissions, a reduction in summertime cooling costs and a more efficient home? Cool roof technology can do all that. Cool roof technology has the potential to eliminate billions of tons of carbon dioxide at a very low cost.

If you’ve ever spent time on a black asphalt roof or up in an attic during the heat of summer, you understand how much heat energy is added to a home during summer months. This is heat that many of us pay to remove by using air conditioners and other means.

But what if, just by a better design and choice of materials, we could have a far cooler house that uses far less electricity each month? That is what people in the Mediterranean and other hot climates have been doing for centuries. White paint and chimney-style ventilation that distributes cool air from lower areas of the house are low-tech examples of cool roof technology that works.

Modern cool roof technology is similar. Most are just like regular roofs but are designed to reflect sunlight and shed heat, to keep buildings cooler in the summer. According to a study by the National Renewable Energy Laboratory (NREL), cool roof technology could reduce energy consumption for cooling by up to 20%. The study also found that energy savings from cool roof technology could eliminate up to 1.4 billion tons of carbon dioxide emissions annually in the United States. The equivalent of taking 300 million cars off the road!

According to Lawrence Berkeley National Laboratory, if all North American cities with populations over 1 million people adopted cool roof technology, air conditioner use would fall by one-third.

The Human Cost of Heat

The savings aren’t just in terms of money and carbon emissions. Climate change has disproportionately increased temperatures in urban areas. An urban landscape largely covered in asphalt, concrete and black roofing materials is far hotter than one covered in greenery or reflective materials, a phenomenon known as the urban heat island effect.

The urban heat island effect is the phenomenon of cities being warmer than surrounding rural areas. This is because cities have more dark surfaces, such as black roofs, which absorb sunlight and heat up the air. The heated air then rises, creating a convection current that draws in cooler air from surrounding areas. This process can lead to increased temperatures in cities, which can have a number of negative consequences, such as increased energy consumption for cooling, decreased air quality, and increased heat-related illnesses and deaths.

Black roofs also radiate energy directly into the atmosphere. This energy is then absorbed by clouds and trapped by the greenhouse effect, further contributing to global warming.

Type Depends on Location Climate

There are a number of different types of cool roof technology available, including:

  • Reflective roofs: Reflective roofs are the most common type of cool roof. They are made of materials that reflect sunlight, such as white or light-colored tiles, metal roofs, or paints. Reflective roofs can reflect up to 90% of the sun’s heat, which can help to keep buildings cooler in the summer.
  • Evaporative roofs: Evaporative roofs are made of materials that allow water to evaporate, such as clay tiles or metal roofs with a water-absorbing coating. As the water evaporates, it cools the roof and the building below. Evaporative roofs can be effective in hot, dry climates.
  • Phase-change materials: Phase-change materials are materials that change their state from solid to liquid and vice versa. When these materials change phase, they absorb or release heat. Phase-change materials can be used in cool roofs to store heat during the day and release it at night. This can help to keep buildings cooler in the summer and warmer in the winter.
  • Cooling paints: Cooling paints are paints that are applied to roofs to make them more reflective and to help them cool down. Cooling paints are effective in hot, sunny climates and typically contain titanium dioxide, a highly reflective pigment.
  • Cooling granules: Cooling granules are small, reflective beads applied to roofing materials like shingles. The granules reflect sunlight and help to keep the roof cooler. Like cooling paints, cooling granules are most effective in hot, sunny climates.

 

Green Roofs are Cool Roofs

Another type of cool roof technology is the green roof. Green roofs are made of a waterproof membrane with a layer of soil and vegetation on top that helps to insulate the roof and reflect sunlight. Green roofs can reflect up to 70% of the sun’s heat, which can help to keep buildings cooler in the summer. In some cases, they can provide vegetable gardens or just a nice place to sit and enjoy the feeling of being surrounded by nature – while in the city.

Green roofs also have the effect of providing bird and pollinator habitat as well as reducing stormwater runoff. Because of the benefits, many cities are now mandating the installation of green roofs on new construction. New York, San Francisco, Chicago, Seattle and Portland all require green roofs on new construction on buildings with roof areas over a specific set size. That said, retrofitting an existing building is often cost prohibitive due to the structural requirements to support the additional weight.

Cool roof technology is a promising way to reduce greenhouse gas emissions and improve the energy efficiency of buildings. As the technology continues to develop, the potential for cool roofs to reduce carbon dioxide emissions will likely increase.

This is an easy way to make big gains in carbon reductions, saving homeowners and businesses money. Something we can all get behind.

 

 


 

 

Source Happy Eco News

Creating Biochar to Sequester Carbon and Fertilize Plants

Creating Biochar to Sequester Carbon and Fertilize Plants

The slash-and-burn agriculture technique grows food whereby forested land is clear-cut, and any vegetation is burned. The resulting layer of ash from the burnt vegetation provides a newly cleared land with a nutrient-rich layer that helps fertilize crops. Traditionally, the area was left fallow and reverted to a secondary forest of bush. Cultivation would then shift to a new plot.

Unfortunately, as we’ve shifted towards a fast-past world, these techniques are deemed harmful to the environment as modern slash-and-burn techniques are a significant source of carbon dioxide emissions, especially when used to initiate permanent deforestation. Moreover, many of these plots do not get replanted.

On a smaller scale, farmers are turning to create biochar to sequester carbon emissions and aid in growing their crops. Biochar is similar to slash-and-burn techniques, except it is created artificially through a process called pyrolysis. It is made when biomass, such as fallen tree branches and crop residue, is heated at 200-400°C with little or no oxygen.

Various types of biomass have been used on a commercial scale to produce biochar. This includes agricultural and forestry by-products (such as straw or tree bark), industrial by-products (such as paper sludge and pulp), animal wastes (such as chicken litter) and sewage sludge. Converting biomass to biochar offers an excellent method for reducing waste and using these by-products.

This process decomposes the organic waste into a solid residue of carbon. Farmers can apply it to the field where around 50 percent of the carbon is stored in stable forms as a soil additive to improve drainage, aeration, plant health, crop yield, and water and nutrient retention. Biochar helps process things that settle on it, such as soil’s water and nutrients that the plants can access when needed. Biochar can also absorb heavy metals, reducing the plants’ risk of accessing them.

There are a number of ways that small farmers can use biochar to sequester carbon:

  • Incorporate it into their soil: Biochar to sequester carbon can be added as a soil amendment. This can be done by broadcasting it on the soil’s surface or by mixing it into the soil.
  • Use it as a fertilizer: Biochar can be used as a fertilizer by mixing it with compost or other organic materials. This can help to improve the nutrient content of the soil and increase crop yields.
  • Use it to produce energy: Biochar can be used to produce energy by burning it in a stove or furnace. This can provide farmers with a renewable source of energy.

This process reduces emissions from organic waste that is burned or left to decompose, producing greenhouse gases. Studies have shown that only about 10 to 20 percent of the residue carbon is recycled into the soil when crop residue is left to decompose on its own.

Biochar increases soil fertility more than simple plant matter and reduces nutrients from leaching from the crop root zone, meaning they would have to use less chemical fertilizers to grow their crops. Using biochar to sequester carbon will also benefit farmers who cannot afford to buy fertilizers or invest in organic cultivation techniques that take a long time to establish. It also helps establish independence among smaller farmers as they would not have to depend on chemical fertilizer companies.

Creating biochar to sequester carbon is a sustainable way to fertilize plants and actively remove carbon from the atmosphere. According to the IPCC, biochar is one of the safest, most durable ways to remove carbon from the atmosphere. It helps create nutrient levels in the soil that are more stable and resistant to environmental degradation. This allows farmers to save money and resources, reducing their environmental impact.

 

 


 

 

Source  Happy Eco News 

The Air-gen Device that Converts Humidity into Energy

The Air-gen Device that Converts Humidity into Energy

What if it were possible to create energy out of air? A purely sustainable and renewable source of energy that wouldn’t require towers or panels. Researchers from the University of Massachusetts Amherst have developed just that. It turns out that air humidity is a vast, sustainable reservoir of energy that is continuously available. The researchers claim that just about any surface can be turned into a generator by replicating the electrical properties of storm clouds. A storm cloud is a mass of water droplets, all of which contain a charge. When the conditions are right, the cloud can produce a lightning bolt. The researchers have used similar properties to build a small-scale cloud that can produce electricity predictably and continuously.

So how does it work? Their air generator (Air-gen) relies on microscopic holes smaller than 100 nanometres (even more minuscule than a strand of a human hair). The small diameter of these holes is called a “mean free path”, which is the distance a single molecule can travel before it collides with another molecule of the same substance.

Water molecules float all around the air, and their mean free path is around 100 nanometres. As the humid air passes through Air-gen’s minuscule holes, the water molecules will directly contact an upper and lower chamber in the film. Because each pore is so small, the water molecules would easily bump into the pore’s edge as they pass through the thin layer. This interaction creates a charge imbalance and results in electricity.

The researchers claim that their product could offer kilowatts of power for general usage as long as there is any humidity in the air. Their Air-gen device could be more space efficient and blend into the environment compared to other renewable energy options such as solar and wind power. Moreover, humidity exists at all hours of the day and night, rain or shine, to provide non-stop energy.

The researchers also claim that harvesting the air and water droplets could be designed from all kinds of materials, which offers many opportunities for cost-effective and environment-adaptable designs. The Air-gen device is so small that thousands of them could be stacked on top of each other, increasing the amount of energy it gives off without increasing the environmental footprint of the device.

This device stems from the researcher’s previous inventions of generating an electric current using moisture in the air using a microbe called Geobacter. Their device produced a sustained voltage of about 0.5 volts for about 20 hours and could light up small LED bulbs. However, they couldn’t get the microbe to create enough nanowires (the small holes that generate the electric charge) to scale up the technology further.

Their new Air-gen device has never been discovered before, and it opens up many possibilities for effectively using renewable resources to create energy. It’s incredible to think we could harvest energy from the air around us. This discovery and invention could be scaled up. They could make renewable energy more accessible to people around the world. They could reduce the negative environmental impact we see with some existing forms of renewable energy (solar panels or wind turbines).

 

 


 

 

Source Happy Eco News