Search for any green Service

Find green products from around the world in one place

Water Based Battery Safer than Lithium

Water Based Battery Safer than Lithium

A novel water based battery is said to be safer than lithium at half the cost.
A Boston-area startup called Alsym Energy has introduced a rechargeable water based battery that could match lithium-ion batteries’ performance at a fraction of the price.

In addition to using inexpensive, easily accessible materials like manganese and metal oxide, the novel battery is based on water, according to an initial report from Fast Company.

Being a water based battery means it avoids some of the main drawbacks of current batteries, such as the potential for lithium-ion battery fires and the negative impact of mining on the environment. And thanks to the use of non-toxic materials, the water based battery design is simpler to recycle, which is always a bonus.

Electric vehicles are becoming more important as the world’s nations step up their efforts to decarbonize the grid. That’s because they can aid in decarbonizing both transportation and supply of electricity through reduced tailpipe emissions and offer flexibility. Naturally, many automakers are tapping into the market by producing luxurious EVs; however, the expensive price tag remains to be a problem to this day. The costs are partly due to the lithium-ion batteries that are used in electric vehicles, which are too costly to make EVs that can compete in price tag with cars that run on fossil fuels.

This is where Alsym Energy, which recently emerged from stealth and secured $32 million from investors, comes in. According to a press release, with its first partner being an automaker in India, the startup wants to make it possible for manufacturers to produce cheaper electric vehicles.

“Our motivation was to make it affordable so that it could be widely deployed as opposed to niche,” Mukesh Chatter, CEO and co-founder of the startup, told Fast Company.

The Alsym Energy water based battery is inexpensive enough that it might be used in developing countries to store off-grid solar power. This is especially crucial for individuals who do not currently have access to energy.

 

What Makes the Water Based Battery Special?
The water based zinc battery makes use of other affordable, easily accessible components like manganese and metal oxide. Crucially, it does not contain cobalt, an expensive critical component of lithium batteries that also contributes to supply-chain health and environmental issues due to unethical mining practices. It also doesn’t use lithium at all, which requires resource-intensive salar brine extraction methods, mainly concentrated in conflict-prone regions of South America. Avoiding lithium and cobalt reliance is incredibly important as both metals have seen extreme price increases recently amid surging EV demand.

Lithium carbonate prices have skyrocketed over 750% in the last two years. And cobalt more than doubled in cost since 2020. These unstable dynamics will likely drive up prices of lithium-ion batteries for the foreseeable future. By swapping water for expensive, ethically fraught raw materials, the aqueous zinc batter stands to radically transform the energy storage calculus in terms of affordability, local manufacturing potential, and stability of supply chains.

According to the team behind Alsym Energy, the new design has “lithium-like performance.” But unlike the latter, Alsym Energy’s batteries are not flammable. This saves money as it doesn’t require special protection to avoid fires and gives the batteries additional applications, such as use in ships, where the industry is particularly concerned about fire risk.

If all goes to plan, Alsym Energy will start beta testing with its first customers in early 2023, with high-volume production beginning as early as 2025. The novel battery design will surely make waves globally; however, the company’s priority is to first make it affordable in low-income regions.

 

 


 

 

Source  Happy Eco News

Baking Bread in a Solar Oven

Baking Bread in a Solar Oven

Since 2019, Lebennon has been facing an economic crisis. Following decades of corrupt government financial mismanagement, banks started to impose restrictions on withdrawals. They stopped giving short-term loans to businesses and no longer provided them with US dollars for imports. As a result, this reduced the country’s ability to pay for imports, including essentials such as wheat and oil.

Moreover, many of Lebannon’s bakeries rely on expensive diesel generators for electricity because the ongoing economic crisis has devastated its power grid. In 2021, the country’s two main power plants ran out of fuel and shut down. Most households only receive about one hour of electricity per day, and the cost of food increased by 350 percent in April 2023. Many people in the country cannot even afford basic foods like bread. In some cases, the cost of a loaf has increased seven times in the space of a month.

To help feed the country’s population, an inventor, Toufic Hamdan, created a commercial bakery to bake bread in solar ovens. The startup “Partners With Sun” has installed a solar convection oven on the bakery’s roof. The Solar Oven uses large silver mirrors to capture and magnify the sun’s rays to build heat.

The heat is transported by a transfer fluid which is then used to help operate a convection oven, allowing it to reach a baking temperature of between 300 and 400 Celsius. The heat is used directly in food and beverage production. They have successfully made milk loaf, French bread and anything that can be cooked at this temperature. The Solar Oven is designed for industrial use in the baking industry.

The Solar Oven is able to cut up to 80% of the bakery’s fuel bill and improve its production efficiency. As a result, it also reduces the amount of diesel the country would have to import. As a result, it will reduce the price of the bread bundle that reaches the customer. Moreover, each bakery would save at least around 10 tonnes of diesel a month. By 2030, Toufic hopes to completely eliminate the use of diesel ovens in bakeries and rely only on solar ovens.

Lebanon is also increasing the use of solar energy for individuals and businesses. The country went from generating zero solar power in 2010 to having 90 megawatts of solar capacity in 2020. An additional 100 megawatts were added in 2021 and 500 megawatts in 2022. This is a sustainable way for people to move away from diesel and has become a stand-in for both grid-supplied electricity and private diesel generators.

Although the switch towards relying on solar power in Lebanon is now a response to the economic crisis than a reaction to climate change and air pollution, it is an inspiring way to show how we can use the earth’s resources to help our societies in times of crisis. The country now has a target to source 30% of its electricity from renewables by 2030. This switch will help provide electricity and food at reduced costs to the people of Lebanon during this economic crisis.

 

 


 

 

Source  Happy Eco News 

Vortex Bladeless Turbine Wind Generator

Vortex Bladeless Turbine Wind Generator

How the Vortex Bladeless Turbine Works

The Vortex Bladeless Turbine is a pole-shaped structure that functions without rotating blades, but instead of rotating blades, it works off vibrations generated in the structure by vortices created when the wind passes around it. When the frequency of the vortices matches the resonance frequency of the structure, into which an alternator is integrated, the vibration energy can be transformed into electricity. In simpler terms, as the wind flows past the turbine, it creates a series of spinning whirlwinds, or vortices, that cause the rod-shaped turbine to vibrate. This vibration then converts the mechanical energy into electrical energy that can be used as a source of power.

One of the main differences between bladeless or motionless turbines and traditional wind turbines is that they can generate power at low wind speeds, which is significant because wind speeds in urban areas are typically lower than in rural areas. Traditional turbines require higher wind speeds, making them less effective in built-up areas.

Advantages of the Vortex Bladeless Turbine

One of the significant benefits of the Vortex Bladeless Turbine is that it’s more cost-effective than traditional turbines. It has fewer moving parts, which results in reduced manufacturing and maintenance costs. Also, it doesn’t require any oil or lubricants, making it a more environmentally friendly option.

The design of the Vortex Bladeless Turbine is more eco-friendly than traditional turbines because its pole-shaped structure does not pose any harm to birds and other animals that can come into contact with rotating blades. Furthermore, the device’s sleek design takes up less space than traditional wind turbines, making it adaptable to a wide range of environments.

Another benefit of the Vortex Bladeless Turbine is its flexibility. Its small size makes it the perfect choice for urban areas, where space is limited. They can be placed on the roofs of buildings or integrated into street furniture, providing an unobtrusive source of renewable energy. It can also be used to power individual homes or small communities that are off-grid, where running costs are a concern.

Applications of the Vortex Bladeless Turbine

One application of the Vortex Turbine is in urban environments. As mentioned earlier, these turbines can generate electricity at low wind speeds, making them a viable option for powering cities and towns. By placing them in strategic locations, they can capture the wind currents that flow through narrow streets, parks, and plazas.

Another application of the Vortex Bladeless Turbine is its potential to replace traditional turbines in remote locations. Traditional turbines are often used to provide power in areas where a connection to the electrical grid is not possible. However, their high manufacturing and maintenance costs make them less feasible in such instances. The Vortex Bladeless Turbine, being cost-effective and low maintenance, provides an alternative that can meet the power needs of those living in isolated areas.

The Vortex Bladeless Turbine is a revolutionary wind power generator that has the potential to transform the way we generate renewable energy. Its low manufacturing and maintenance costs, eco-friendly design, and flexibility make it an attractive option for powering urban areas and remote places alike. While there are some limitations, such as the amount of power generated compared to traditional turbines, and the need for further development to increase efficiency, the Vortex Bladeless Turbine is a step in the right direction towards a cleaner, more sustainable future. The device’s minimal environmental impact also makes it an excellent choice for environmentally conscious consumers and energy companies alike.

With renewable energy becoming more important in the fight against climate change, the development of innovative technologies like the Vortex Bladeless Turbine is crucial. As we continue to explore cleaner, more sustainable sources of energy, devices like these will become increasingly critical. And while there are still challenges to overcome and further research to be done, the potential benefits of the Vortex Bladeless Turbine make it a promising addition to our renewable energy toolkit.

Overall, the Vortex Bladeless Turbine is a fascinating innovation that could play a significant role in the future of wind power generation. Its eco-friendly design, low cost, and flexibility make it an exciting alternative to traditional wind turbines. It’s clear that as we move towards a more sustainable future, technologies like this will continue to be developed, offering us new and exciting ways to generate renewable energy and help protect our planet.

 

 


 

 

Source Happy Eco News 

 

Vestas Introduces Low-Wind Variant Suited For India’s Wind Market

Vestas Introduces Low-Wind Variant Suited For India’s Wind Market

The global demand for sustainable energy solutions in low and ultra-low wind areas continues to grow as renewable technology improves in efficiency and cost. This trend is especially prominent in India, the world’s fourth largest wind energy market, where the energy demand is expected to double and the government intends to add around 100 GW wind power in the predominantly low-wind market by 2030.1

While the new turbine is globally applicable, it initially targets low and ultra-low wind condition projects in India and USA. It increases the turbine swept area by 67 percent in comparison to V120-2.2 MW, and with a large rotor to rating ratio, it significantly improves the partial load production in low-wind conditions. The V155-3.3 MW improves the annual energy production (AEP) by more than three percent for a 300 MW wind park with 46 fewer turbines, creating an improved level of business case certainty.2

“With the introduction of the V155-3.3 MW wind turbine, Vestas is connecting our proven 4 MW platform technology with customized solutions to improve our customers’ business case in low and ultra-low wind conditions,” says Thomas Scarinci, Senior Vice President of Product Management Vestas. “With this product designed specifically to optimise energy production in low and ultra-low wind conditions, we are confident that we can bring enhanced value to our customers and partners in India and other suited markets.”

As the turbine will be predominantly locally manufactured and sourced in India, it reinforces Vestas’ existing commitment to the country’s growing renewable energy industry. Vestas will increase its already prominent manufacturing footprint in India by establishing a new converter factory in Chennai and expanding its current blade factory in Ahmedabad. These investments follow our previously announced new nacelle and hub factory in Chennai, which is currently under construction. The production ramp-up will add around 1,000 new jobs within the next year to the approximately 2,600 people currently working for Vestas in India. While the expanded production setup in India will serve the growing wind market in the region, it will also act as a strategic export hub.

“We have installed close to 4 GW of wind turbines in India over the last two decades and established a large production footprint, and we’re excited to leverage this as we support the government’s ambitions for renewable energy. With the introduction of the V155-3.3 MW turbine, we are able to offer improved energy production and business case certainty for our customers in India’s growing wind market,” says Clive Turton, President of Vestas Asia Pacific. “With the production ramp up in India, we anticipate increased employment across our existing hubs, underlining our commitment to better support our customers and drive the country’s renewable energy transition.”

With an optimized blade design and market specific towers up to 140m hub height, the turbine is designed to meet local transportation requirements. Built on the globally proven 4 MW platform, the V155-3.3 MW features a full-scale converter delivering excellent grid compliance, faster active and reactive power during dynamic frequency and voltage events.

With 35 GW of 4 MW platform turbines installed in 47 countries, the V155-3.3 MW has been developed within Vestas’ leading standards within design, testing and manufacturing, ensuring customer’s business case certainty.

Prototype installation is planned for the third quarter 2021, while serial production is expected by the first quarter of 2022.

GWEC, India wind outlook toward 2022
Compared to V120-2.2 MW

 


 

Source: CleanTechnica