Search for any green Service

Find green products from around the world in one place

Cement Energy Storage – Two Ways

Cement Energy Storage – Two Ways

Cement, the binding agent in concrete, is the world’s most widely utilized construction material and may soon be used as cement energy storage. However, emerging research reveals its overlooked potential to serve as a cement energy storage medium in two completely different ways: solid thermal batteries and supercapacitors (when combined with carbon).

Cement Blocks as Thermal Batteries

According to an article in the Journal of Composites Science, scientists have developed a method to produce cement-based blocks that effectively function as thermal batteries. Their technique infuses cement blocks with the ability to soak up renewable electricity when manufactured and then discharge it later on demand as usable heat.

The researchers use chemical alterations during the concrete mixing process to integrate phase change materials into the cement binder matrix. These phase-change materials have the ability to store and release thermal energy.

The resulting cement energy storage blocks contain phase change materials that can absorb electricity when it is most abundant and inexpensive from the grid or renewable sources. The charged blocks can then act as solid thermal batteries, releasing their stored energy as heat when needed for space and water heating systems.

In initial tests, the team achieved energy densities comparable to lithium-ion batteries in their cement energy storage-based blocks. This stored energy is emitted as gentle heat when water is added, with adjustable discharge rates. The blocks can offer long-duration energy storage across daily cycles or entire seasons.

By incorporating waste materials like plastic ash during production, the researchers achieved lower costs than conventional concrete blocks or batteries. Additional waste heat captured during block fabrication can provide self-generated power.

The creators say that scale adoption of such cement energy storage thermal batteries could provide renewable energy storage for buildings while lowering grid demand peaks. The cement blocks offer an alternative to mining metals like lithium, cobalt, and nickel, which are finite and environmentally destructive to extract.

This novel approach redirects one of cement’s existing useful properties – its high thermal mass – towards storing renewable energy rather than fossil fuels traditionally used for heat in cement kilns. It points to one-way cement could aid sustainable energy transitions through material innovation.

 

Conductive Cement-Carbon Composites

Researchers at MIT have also demonstrated cement energy storage’s potential as an energy storage medium by transforming it into a highly efficient supercapacitor. Their method infuses cement with carbon-based additives to create cement-derived composites with enhanced conductive properties.

The MIT team found that the resulting material attained supercapacitor-like behaviors by mixing cement with inexpensive carbon black additives. This was due to carbon black creating a conductive surface area network throughout the composite.

With just 3% carbon black content by volume, cement’s conductivity spiked to levels comparable to powerful supercapacitors. The team states that a cement block around 45 cubic meters in size could potentially store up to 10 kilowatt-hours of energy – equal to an average home’s daily usage.

While still experimental, the researchers say these carbon-infused cement energy storage composites could enable integrated energy storage in concrete structures. Walls, foundations, or roadways made with such cement mixtures might capture solar, wind, or waste energy onsite for later usage.

The carbon provides the charge-storing capacity, while ubiquitous cement allows for scalable, inexpensive production since these composites do not rely on scarce materials like lithium or cobalt. Combined, they offer unique advantages as sustainable energy storage solutions.

 

Conclusion

Together, these two emerging techniques demonstrate that one of the planet’s most abundant building materials – cement – can potentially provide flexible, large-scale energy storage as demands grow.

While still in the early stages, both research trajectories showcase cement’s latent abilities to store energy through novel manufacturing processes and composite ingredients. With further advancement, cement energy storaget-based batteries and supercapacitors may offer new tools for enabling greater renewable energy integration across infrastructure. The present global ubiquity of concrete construction means cement-derived energy storage could be rapidly deployable once perfected. Unlocking the hidden attributes of cement through materials science and engineering may yield key innovations to support grids in an electrified, renewable future.

 

 


 

 

Source   Happy Eco News

ECONYL Sustainable Nylon Alternative

ECONYL Sustainable Nylon Alternative

Nylon is the stretchy material found in underwear, hosiery, activewear, swimwear, and even umbrellas. It was the first fabric to be made in a laboratory. Nylon is made out of crude oil and is very energy-intensive to produce. Producing nylon creates nitrous oxide, which is 300 times more potent than carbon dioxide. Large amounts of water are needed to cool the fibres along with lubricants, which can become a source of contamination. Moreover, nylon is not biodegradable. If it makes its way into the oceans, it will degrade to thin fibres and small particles that wildlife can digest.

Many designers and fashion brands want to use a sustainable nylon alternative in their garments, but it is difficult to find them. One new sustainable nylon alternative is called ECONYL, a trademark of the Italian plastics company Aquafil. Sustainable nylon alternative ECONYL is made up of nylon waste, including fishing nets, fabric scraps, carpet flooring, and industrial plastic. The nylon waste is recovered and converted into new yarn. This regenerated nylon can be recycled, recreated, and remoulded repeatedly. ECONYL is chemically identical to nylon 6, which means it has the same characteristics as traditional nylon and can be used in the same ways.

The ECONYL Regenerative System happens in four steps.

  1. They rescue waste like fishing nets, fabric scraps, and industrial plastic from all over the world. The waste is sorted and cleaned to recover all of the nylon possible.
  1. Through radical regeneration and purification, the recovered nylon is recycled back to its original purity, allowing the quality of ECONYL to reflect that of fossil-based nylon.
  1. The recycled nylon is processed into new yarns and polymers for fashion and industrial brands.
  1. These brands can use ECONYL to create new products. Once the products containing ECONYL are no longer useful to customers, they can return and be regenerated again.

According to the ECONYL website, for every 10,000 tons of ECONYL raw material produced, they can save 70,000 barrels of cruise oils and over 65,000 tonnes of carbon dioxide emissions. Switching to sustainable nylon alternative ECONYL also reduces the global warming impact of nylon by up to 90% compared with the material from oil.

Using abandoned fishing nets to make ECONYL helps to clean up the oceans and helps reduce the risk of marine animals getting entangled by abandoned nets. ECNOYL has teamed up with many take-back organizations to collect the materials used in creating their regenerative nylon. They have two carpet facilities in the US where they collect nylon 6. They also work with the Healthy Seas Foundation to collect recovered fishing nets.

ECONYL has teamed up with over 100 brands (many are swimwear and activewear brands) to include this sustainable nylon alternative in their products. Gucci, for example, launched its own recycling program to convert textile scraps into new ECONYL yarn. Gucci has also used ECONYL to create sustainable nylon alternative handbags. In 2023, Stella McCartney launched its first-ever close-the-loop garment, a parka made from ECONYL that is designed to be returned and regenerated into new yarn at its end-of-life. Adidas has been known to incorporate ECONYL into some of their swimwear designs.

We are also seeing ECONYL used in interior brands like Pottery Barn to make rugs and car brands like BMW and Mercedez-Benz to produce their car floor mats. BMW also uses ECONYL in various interior trims, such as seat covers, door panels, and dashboard components.

As more brands begin to use ECONYL in their designs, we may eventually see a phase-out of traditional, fossil-fuel nylon. This sustainable switch will help the design and fashion industries become greener, our oceans cleaner, and help to create bigger importance on recycling and regenerating used materials.

 

 


 

 

Source  Happy Eco News

The Green Revolution: Sharing Leading the Way

The Green Revolution: Sharing Leading the Way

The Green Revolution: Sharing leading the way

In a world grappling with pressing environmental challenges, the call for sustainable solutions has never been more urgent. One such solution gaining rapid momentum is the sharing economy, a model that not only promotes resource efficiency but also leads us on the path towards a greener planet. The sharing economy actively encourages the sharing, renting, and borrowing of goods, services, and spaces, fostering a sense of community while simultaneously minimizing our ecological footprint. In this article, we explore why sharing and the sharing economy are indispensable for the planet and how they can shape a more sustainable future.

 

Resource Conservation

At the heart of the sharing economy lies its ability to optimize resource utilization. Sharing goods ensures that their lifespan is maximized, consequently reducing the need for overproduction. A prime example is the success of car-sharing services. Instead of each individual owning a car that remains idle for most of its life, car-sharing platforms enable multiple people to use the same vehicle, thus decreasing the number of cars on the road and the associated resource consumption.

Reduced Waste

In a world plagued by excessive waste production, the sharing economy provides a remedy by discouraging unnecessary consumption. Sharing platforms offer individuals access to items they need temporarily, effectively reducing the demand for single-use products. Tools, appliances, or clothing can be shared within a community, eliminating the need for every individual to buy these items individually. This practice significantly reduces waste generation and lessens the environmental impact linked to manufacturing and disposal.

Energy Efficiency

The sharing economy also champions energy efficiency by encouraging the utilization of existing resources rather than the creation of new ones. Home-sharing platforms, for instance, enable homeowners to rent out their unused spaces, be it an extra room or an entire house. By making use of existing housing infrastructure, we optimise energy consumption in contrast to constructing new buildings. Furthermore, these platforms incentivise homeowners to invest in energy-efficient practices and technologies, such as renewable energy systems or energy-saving appliances, ultimately reducing carbon emissions.

Sustainable Lifestyles

Embracing the sharing economy fosters a shift in mindset from ownership to access. Instead of relentlessly pursuing possession, people begin to prioritize experiences and the efficient use of resources. This shift in consumer behavior can lead to a more sustainable lifestyle. When individuals recognize the value of sharing and collaboration, they become more conscious of their consumption patterns, opting for sustainable choices that benefit the planet.

Strengthened Communities

The sharing economy has a profound social impact as it brings people together and builds stronger communities. Sharing platforms often connect individuals living in close proximity, facilitating interaction and trust-building. When people collaborate, share resources, and support one another, a sense of belonging and shared responsibility develops. These communities often extend beyond the digital realm, fostering increased social cohesion and support networks.

Innovation and Entrepreneurship

The sharing economy has opened up avenues for innovation and entrepreneurship, particularly in sustainable sectors. It has given rise to new businesses and start-ups focused on sharing services, renewable energy, sustainable transportation, and circular economy practices. These ventures have the potential to create new jobs, drive economic growth, and contribute to a more sustainable future.

Leading the Way

Companies like RentMy enable people to “share” everything they own with others in their community. From paddleboards to canoes, DIY tools to garden equipment, musical instruments to cooking appliances, you can earn money from all the items that are just sitting around.

Tentshare and Camptoo do the same but for niched products like tents, camping equipment, and camper vans, allowing people to experience an adventure weekend without the significant upfront costs for all the equipment.

Then there’s Bike Club, a subscription service for bicycles that allows your child to upgrade each time they outgrow their ride. For adults, there’s Spinlister, which connects people who want to ride bikes with bike owners all over the world.

 

Next Steps

Without a doubt, the sharing economy is here to stay, largely because the benefits it offers are immense. It’s a sustainable choice, reducing the demand for brand-new products. It also promotes community, particularly those with a local focus. It can save and earn you money, with peer-to-peer lending offering an alternative to buying expensive equipment outright and also providing additional income to those renting out their assets.

But what truly drives this fast-growing economy is trust.

This is what allows someone to take a car ride from a stranger or rent a room in a house from someone they’ve never met.

 

How Do You Build Trust?

The article, aptly titled “The Decline of Serial Killers and the Rise of the Sharing Economy,” suggests that the internet has played a significant role in increasing trust between strangers.

Thanks to the fact that nearly all of us have a virtual identity these days, it’s challenging to go completely under the radar, reducing our fear of strangers.

This means we are more willing to engage with those we don’t know, seeing “strangers” as “peers.”

Businesses operating within the sharing economy are also employing various tactics to build upon this trust. For example, we encourage users to upload profile photos and write detailed profile descriptions that help identify them on a personal level.

We have also addressed concerns about the risk of damage. This has been a vital part of the development of RentMy. We provide extensive insurance protection for all those on our platform, allowing lenders to loan their items out risk-free, knowing that we will cover any damage or loss.

 

Final Thoughts

In a world increasingly aware of the environmental challenges we face, the sharing economy has emerged as a beacon of hope, leading the way towards a more sustainable future. It champions resource conservation, reduces waste, promotes energy efficiency, and encourages sustainable lifestyles. Moreover, it fosters stronger communities, fuels innovation and entrepreneurship, and ultimately drives positive change in our society.

Companies like RentMy, Tentshare, and Bike Club exemplify how individuals and businesses can play a pivotal role in this transformative movement. The sharing economy is not only here to stay but also set to thrive, offering a sustainable, community-driven, and financially rewarding path forward.

But, as we embrace the sharing economy, we must recognise that trust is its cornerstone. The internet has been a key enabler, reducing our fear of strangers and turning them into peers. Building trust involves transparency, identity verification, and addressing concerns, such as the risk of damage. At RentMy, we take these concerns seriously, offering comprehensive insurance protection to assure both sharers and renters.

Trust is the bridge that allows us to share with one another, and as we continue down this path, it’s a bridge that will only strengthen and lead us towards a greener, more interconnected world. So, as we take that car ride from a stranger or rent a room from someone we’ve never met, we are not just participating in the sharing economy; we are actively shaping a more sustainable, connected, and trust-driven future for all.

 

 


 

 

Source   Happy Eco News

Renewable energy battery systems could harness eggshell proteins for electricity conduction

Renewable energy battery systems could harness eggshell proteins for electricity conduction

Chicken eggshells may be the answer to developing safer, sustainable and cost-effective rechargeable battery storage systems, according to new research.

Murdoch University Associate Professor Dr. Manickam Minakshi Sundaram, from the Center for Water, Energy and Waste at Harry Butler Institute, for a doctoral thesis has successfully developed a new mechanism associated with electrode materials and electrolytes, offering an alternative to the expensive and impractical power storage technologies of the past and present.

“We’ve found that chicken eggshells can be used as electrodes—a conductor of electricity—in powering batteries. Eggshells contain a high level of calcium carbonate, and when they are baked and crushed, their chemical compositions change and they become a more efficient electrode and conductor of power,” Dr. Minakshi said.

“The current lithium-ion batteries used for renewable energy storage typically use fossil fuels.

“Repurposing a bio-waste product like eggshells could add considerable value to the renewable energy market. They also offer a potentially safer option, as the current lithium battery technologies are high-cost and potentially unsafe in the event of catastrophic failure.”

As the world continues to prioritize renewable energy sources, this breakthrough marks a significant step forward, offering hope for a greener and more sustainable future.

The study, conducted by Dr. Minakshi as part of his higher doctorate thesis with Flinders University, focused on the development of sustainable electrodes in aqueous-based energy storage technology.

“The implications of this study go beyond scientific discovery,” Dr. Minakshi said.

“Chicken eggs and related products are used in large quantities in the food processing and manufacturing sectors, households, the nutrition industry and even in the pharmaceutical industry, but their shells are typically sent as solid waste to landfill.

“However, eggshell and shell membranes contain a range of active chemical compounds that can be used. The reversibility of this new approach allows for efficient energy storage and retrieval. The study demonstrates that highly conductive aqueous lithium and sodium electrolytes with varying salt concentrations have the potential to replace existing non-rechargeable primary batteries. The discovery holds the promise of high energy capacity, long cycle life and affordability in aqueous batteries.”

By incorporating suitable additives such as biodegradable redox polymers, titanium boride/sulfide (TiB2, TiS2), or bismuth oxide (Bi2O3) compounds, the electrodes can be further modified to improve their performance.

“The potential applications of this breakthrough are immense,” Dr. Minakshi said. “We could transition from a linear economy to a circular economy, reducing, reusing and recycling waste improving both sustainable development and addressing waste management.”

The studies on sustainable electrode materials have also been extended to other biowaste including chitosan derived from crustaceans, mango seed husk, and grape marc from wineries. From these biowastes, N-doped carbon was derived, which exhibits excellent electrochemical performance.

 

 

 


 

 

 

Source –  Tech Xplore

Generating small amounts of electricity by squeezing luffa sponges

Generating small amounts of electricity by squeezing luffa sponges

A team of mechanical engineers at Beihang University, Peking University and the University of Houston has found that it is possible to capture small amounts of electricity by repeatedly squeezing treated luffa sponges. In their study, reported in Proceedings of the National Academy of Sciences, the group treated sample luffa sponges and measured the electricity they generated when repeatedly squeezed.

Prior research has shown that applying force or stress to certain materials can result in an accumulation of a piezoelectric charge. Prior research has also shown that repeatedly applying and releasing the force or stress can result in the production of a flow of piezoelectricity.

Over the past several years, engineers have investigated the possibility of generating small amounts of piezoelectricity by taking advantage of footsteps, for example, or the movement of clothes as a person walks. Electricity generated and collected in such ways is seen as a possible way to charge personal devices. In this new effort, the research team looked into use of a new kind of material to generate piezoelectricity—luffa sponges.

Luffa sponges are porous shells that are left behind when the fruit of a luffa plant is left to dry. They have been prepared and sold as a commercial product, mainly as a tool for removing dead skin from the body while in the shower. In this new effort, the researchers looked at luffa as a possible tool for generating small amounts of electricity.

They first treated them with chemicals to remove hemicellulose and lignin, leaving behind a cellulose crystal shell. Then, they connected the results to an electrical circuit and began squeezing them over and over by hand. The research team found they were able to generate up to 8 nanoamps of electricity.

They acknowledge that the amount of electricity generated is so small that it likely would not be of much use, but they also suggest that artificially created luffa sponges could be created that would be more efficient. They could also be made a lot bigger to generate useable amounts of electricity.

 

 


 

 

Source  Tech Xplore

Phosphazene-based electrolytes for high-voltage lithium batteries that work in extreme environments

Phosphazene-based electrolytes for high-voltage lithium batteries that work in extreme environments

Lithium metal batteries have numerous notable advantages over other existing battery systems, including high energy density. Nonetheless, the use of most existing high-energy lithium metal batteries in extreme environments is typically deemed unsafe or unfeasible, due to the volatility and flammability of their electrolytes.

Researchers at Bar-Ila University, University of Technology Sydney, CIC energiGUNE, and Tsinghua University recently set out to develop new electrolytes that could support the safe and stable operation of lithium metal batteries in a broader range of environmental conditions. These electrolytes, introduced in Nature Energy, were synthesized by using the fireproof phosphazene-derivative polymeric matrices.

“Replacing the graphitic anodes with metallic Li is considered a viable path to further increase the energy density of Lithium batteries,” Professor Doron Aurbach, one of the researchers who carried out the study, told Tech Xplore.

“However, the growth of dendrites on Li anode during cycling triggers catastrophic safety hazards, which severely hinders their practical applications. To solve this issue, ether-based electrolytes have been widely employed in Li metal batteries because of their relatively low reactivity with Li metal.”

Ether-based electrolyte solutions have a low viscosity and high ionic conductivity. These favorable properties can facilitate the rapid conduction of Li-ions and the exchange of interfacial charges in lithium batteries.

Ether-based electrolytes are also highly compatible with Li metal anodes, thus they can suppress the growth of dendrites while batteries are charging. Despite these advantages, many ether solvents are highly flammable, thus their use can greatly reduce the safety of battery cells.

“The low boiling points of ethers pose safety risks including fire, explosion, and liquid leakage,” Doron said. “Besides, the insufficient oxidation stability of ether-based electrolytes may lead to uncontrollable solvent decomposition on the cathode surface at high voltage (>4 V vs. Li/Li+), greatly deteriorating the cyclability of high-voltage Li metal batteries.”

In recent years, some research teams also introduced localized high-concentration electrolytes, which limit free solvent molecules in Li+ solvation structures. While these alternative electrolytes can reduce the time it takes to extinguish any fires that might arise, they do not fully eliminate the risk of fires or leakages.

“Polyphosphazene flame retardants with excellent flame-retardant effects have been widely used in the field of polymer flame retardants,” Doron said. “Combined with localized high-concentration electrolytes, the hybrids of polyphosphazene can effectively improve the flame-retardant effect with low addition contents. And the safety of the full cells can be largely promoted.”

In their recent paper, Professor Guoxiu Wang and their colleagues introduced a new versatile strategy to optimize ether-based electrolytes, preventing them from catching fire or leaking while also improving their compatibility with electrodes. This strategy entails a co-solvent and gelation treatment using butenoxycyclotriphosphazene (BCPN) monomers.

“To solve the inherent disadvantages of flammability and poor oxidation stability for ether-based electrolyte, fluoromethyl 1,1,1,3,3,3-hexafluoroisopropyl ether (SFE) was introduced as a co-solvent (served as an anti-solvent) with an ether solvent to improve the oxidation resistance and cathodes’ stability,” Wang said. “Then, these binary electrolytes were gelled in situ by polymerization of BCPN monomers to achieve flame retardancy and interfacial compatibility.”

In initial tests, Wang and his collaborator Dr. Dong Zhou found that their proposed treatment using fluorinated co-solvent and fireproof polymetric matrices fully eliminated risks of fire and electrolyte leakage in lithium metal batteries. The team were also able to achieve electrolytes that are highly compatible with high-energy cathodes using a carefully designed Li+ solvation sheath, along with the BCPN-derived protective surface films formed on the cathodes.

“We manufactured high-energy-density Li||NCM811 batteries using our gel electrolyte and these batteries achieved high-capacity retention, superior low-temperature performance, good cyclability under high pressure and steady power supply under abusive conditions,” Dr. Dong Zhou said. “We successfully solved the safety problem for high-energy lithium metal batteries.”

The recent work by this team of researchers could have important implications for the development of next-generation lithium batteries. The electrolytes introduced in Nature Energy and their underpinning design strategy could soon open a new path for fabricating high energy, durable and safely rechargeable Li metal batteries that can operate in extreme environments.

“In our next studies, we intend to continue our research on improving battery safety and low temperature performance, which would help to expand the extreme environment application of high energy density batteries, for instance allowing their integration in aerospace vehicles, submarines and polar region devices,” Wang added.

 

 


 

 

Source  Tech Xplore

Apple touts its first carbon-neutral products

Apple touts its first carbon-neutral products

The Apple product launch event is a highlight in the calendar for anyone working in digital technology. At its headquarters in California on Tuesday (12 September), Apple launched its new iPhone 15 series and ninth Apple Watch series, plus its second iteration of Apple Watch Ultra.

Apple has stated that the new Apple Watch lineup consists solely of carbon-neutral products. It has delivered a 75% reduction in the life-cycle emissions of its watches since 2015 due to investments in clean energy procurement, energy efficiency and reducing transport emissions.

Product re-design and supply chain engagement have also driven reductions in emissions. Each of the watches includes at least 30% recycled or renewable material by weight, for example, including a 100% recycled aluminium casing and 100% recycled cobalt in the battery.

It bears noting that Apple’s carbon accounting for the carbon-neutral claim also covers consumer use of products.

In a statement, the firm said: “Electricity for manufacturing and charging devices represents the largest source of Apple’s emissions across all product lines. To address the latter, Apple has committed to invest in large-scale solar and wind projects around the world. For the carbon-neutral Apple Watch models, the company will match 100% of customers’ expected electricity use for charging.”

To address the 25% residual emissions associated with the watches, Apple will invest in carbon credits “primarily from nature-based projects”.

It has stated an intention to ensure that carbon credits are “high-quality” by assessing whether they represent additional, measurable, quantified and permanent carbon removal. Another key requirement is that the credits are not double-counted.

A surprise move?

Science reporter Justine Calma has argued that Apple’s announcement distracts from the company’s overall impact on climate and the environment. She said a far more important measure of the firm’s work on climate will be whether it delivers its 2030 and 2050 goals.

Apple achieved carbon neutrality for its global corporate operations in 2020 and subsequently pledged to deliver a carbon-neutral value chain by 2030.

It is seeking to reduce emissions upstream and downstream by at least 75% on 2015 levels, only relying on offsetting for a maximum of 25% of residual emissions.

Apple has described this ambition as “aggressive”. Meeting this goal will require increased investments in decarbonising national electricity grids; low-carbon transport innovations and transport efficiencies; product re-design and material innovation.

On the latter, Apple is working to switch to 100% recycled cobalt in batteries, plus 100% recycled tin soldering and gold plating in circuit boards, by 2025. It is also ending the use of leather across all product lines with immediate effect, switching to a new ‘FineWoven’ textile made from 68% post-consumer recycled fibres.

Apple continues to use the language of carbon neutrality despite a forthcoming crackdown on this kind of claim in the EU. Lawmakers voted in May to support a new directive that will prevent companies from badging consumer goods as ‘carbon-neutral’ or ‘carbon-negative’ if they use offsetting.  Only time will tell how Apple will choose to communicate its climate efforts to customers in the EU once this directive comes into force.

Charging port changes  

Another sustainability-related facet of Apple’s latest product launch is the switch from the Apple-exclusive ‘lightning’ charging port to a USB-C port for the iPhone 15.

The change is being made because the EU is mandating that all electronic devices sold within the bloc from 2024 use USB-C charging, in a bid to reduce the e-waste generated by the need for each home to have an array of different chargers.

In the long-term, the result is likely to be waste reduction. But, in the coming months, there are concerns that there will be a spike in the discarding of Apple ‘lightning’ cables. It is estimated that one-quarter of European residents own an iPhone.

 

 


Source edie

Using Bio-Based Materials to Build Cities

Using Bio-Based Materials to Build Cities

Did you know about 56% of the world’s population live in cities? The population numbers of urban dwellers are expected to double by 2050 when nearly 7 out of 10 people will live in cities. Cities are polluted due to industrial and motorized transport systems that rely on fossil fuels. The infrastructure that makes up cities is also constructed with carbon-intensive materials. As a result, cities account for over 70% of global carbon dioxide emissions.

We can’t eliminate these systems that make up our cities, but we can use bio-based materials to make them more sustainable. Carbon emissions could be significantly reduced if just a small percentage of new infrastructure in cities is constructed using sustainable bio-based materials. Moreover, these new buildings could also boost carbon storage and help us reach net zero.

Bio-based materials are catching on in the construction industry. They are materials that grow or are a natural part of the biosphere. Bio-based materials include Timber, straw, hemp, cork, clay, and earth. Besides being honest, these bio-based materials are renewable and have a lower, neutral, or negative embodied energy and carbon than traditional construction materials. Timber, for example, has around three times less embodied carbon than steel and over five times less than concrete.

The construction industry accounts for more than 39% of energy and process-related global carbon emissions. Using timber for building, it can store carbon rather than emit it. The Stockholm Wood City will be built in Sickla, Sweden, and is said to be the world’s biggest wooden city. Wooden construction means a significantly reduced climate impact during the construction phase and the whole life cycle. It also has a faster and quieter construction process.

Another bio-based material emerging in the construction industry is algae. Algae are being used in building facades as a sustainable way to generate heat and biomass for various purposes. The algae act like double glazing, but there is water and algae instead of air between the two panes. The algae will also absorb carbon dioxide and insulate the structure.

Hempcrete is a composite material made from hemp hurds, lime, and water. It is a strong, lightweight, and fire-resistant material that can be used for a variety of building applications, such as walls, floors, and roofs. Hempcrete is considered to be a carbon-negative bio-based material. It absorbs more carbon dioxide from the atmosphere than it produces during its production and use. Further, the production of hempcrete also requires less energy than the production of traditional building materials, such as concrete.

Because hempcrete is a good insulator, it can help to keep buildings cooler in the summer and warmer in the winter. This means that less energy is needed to heat and cool buildings, which reduces the amount of carbon dioxide that is emitted into the atmosphere.

Kenaf is a type of fiber that is made from the stems of the kenaf plant. It is a strong, durable, and lightweight fiber that can be used to make a variety of building materials, such as bricks, panels, and insulation.

Miscanthus is a type of grass that is grown for its biomass. It can be used to make a variety of building materials, such as boards, panels, and insulation.

Other benefits of using bio-based materials in the construction industry are that it helps to stimulate local economies, job creation, biodiversity and reforestation efforts. Using natural materials can help provide affordable and sustainable housing at scale.

While getting the entire construction industry on board with bio-based materials is challenging, some countries are trying to ensure this becomes the norm. The French government has ruled that any public construction financed by the state must contain at least 50% bio-based materials. Amsterdam requires that 20% of the city’s housing projects be constructed with bio-based materials starting in 2025.

As cities and population sizes grow, we will see a rise in carbon emissions. If the construction industry turns to using bio-based materials, there is a chance that we will see healthier cities and a healthier planet over time.

 

 


 

 

Source – Happy Eco News

 

Creating Biochar to Sequester Carbon and Fertilize Plants

Creating Biochar to Sequester Carbon and Fertilize Plants

The slash-and-burn agriculture technique grows food whereby forested land is clear-cut, and any vegetation is burned. The resulting layer of ash from the burnt vegetation provides a newly cleared land with a nutrient-rich layer that helps fertilize crops. Traditionally, the area was left fallow and reverted to a secondary forest of bush. Cultivation would then shift to a new plot.

Unfortunately, as we’ve shifted towards a fast-past world, these techniques are deemed harmful to the environment as modern slash-and-burn techniques are a significant source of carbon dioxide emissions, especially when used to initiate permanent deforestation. Moreover, many of these plots do not get replanted.

On a smaller scale, farmers are turning to create biochar to sequester carbon emissions and aid in growing their crops. Biochar is similar to slash-and-burn techniques, except it is created artificially through a process called pyrolysis. It is made when biomass, such as fallen tree branches and crop residue, is heated at 200-400°C with little or no oxygen.

Various types of biomass have been used on a commercial scale to produce biochar. This includes agricultural and forestry by-products (such as straw or tree bark), industrial by-products (such as paper sludge and pulp), animal wastes (such as chicken litter) and sewage sludge. Converting biomass to biochar offers an excellent method for reducing waste and using these by-products.

This process decomposes the organic waste into a solid residue of carbon. Farmers can apply it to the field where around 50 percent of the carbon is stored in stable forms as a soil additive to improve drainage, aeration, plant health, crop yield, and water and nutrient retention. Biochar helps process things that settle on it, such as soil’s water and nutrients that the plants can access when needed. Biochar can also absorb heavy metals, reducing the plants’ risk of accessing them.

There are a number of ways that small farmers can use biochar to sequester carbon:

  • Incorporate it into their soil: Biochar to sequester carbon can be added as a soil amendment. This can be done by broadcasting it on the soil’s surface or by mixing it into the soil.
  • Use it as a fertilizer: Biochar can be used as a fertilizer by mixing it with compost or other organic materials. This can help to improve the nutrient content of the soil and increase crop yields.
  • Use it to produce energy: Biochar can be used to produce energy by burning it in a stove or furnace. This can provide farmers with a renewable source of energy.

This process reduces emissions from organic waste that is burned or left to decompose, producing greenhouse gases. Studies have shown that only about 10 to 20 percent of the residue carbon is recycled into the soil when crop residue is left to decompose on its own.

Biochar increases soil fertility more than simple plant matter and reduces nutrients from leaching from the crop root zone, meaning they would have to use less chemical fertilizers to grow their crops. Using biochar to sequester carbon will also benefit farmers who cannot afford to buy fertilizers or invest in organic cultivation techniques that take a long time to establish. It also helps establish independence among smaller farmers as they would not have to depend on chemical fertilizer companies.

Creating biochar to sequester carbon is a sustainable way to fertilize plants and actively remove carbon from the atmosphere. According to the IPCC, biochar is one of the safest, most durable ways to remove carbon from the atmosphere. It helps create nutrient levels in the soil that are more stable and resistant to environmental degradation. This allows farmers to save money and resources, reducing their environmental impact.

 

 


 

 

Source  Happy Eco News 

California’s Compressed Air Batteries

California’s Compressed Air Batteries

Engineers and scientists have been developing ways to store unused energy from renewable sources as the world moves from fossil fuels to renewable energy. We’ve seen different types of batteries making their mark, including lithium-ion batteries, pumped hydro, tanks full of molten salt or silicon and more. Now, California has found a way to move past lithium into an even more sustainable battery – compressed air batteries. Compressed air batteries do not require lithium which is expensive and environmentally damaging to dig up. They store energy like solar and wind and are a 24/7 source of clean power for homes and businesses.

In 2021, Hydrostor opened two new compressed air energy storage facilities in California, which provide almost twice the storage capacity. Their facilities use surplus electricity from the grid to run an air compressor. The compressed air is stored in a big underground tank until the energy is needed. When needed, the energy will be released through a turbine to generate electricity that is fed back into the grid. Reheating the air as it is fed into the turbine increases the system’s efficiency.

Hydrosor’s system is optimized for system sizes of over 100 megawatts with 5 hours up to multi-day storage duration. This is longer than the four-hour standard for lithium-ion. Hydrostor projects that it can produce 60% to 65% of the electricity it consumes, which is a larger energy loss than lithium-ion batteries or similar types of storage. Hydrostor says its systems will store up to 10 GWh of energy, providing between eight and 12 hours of energy over a full discharge at close to its maximum rate.

Earlier this year, California’s Central Coast Community Energy (3CE) approved a 25-year contract with Hydrostor to construct a compressed-air energy storage facility, making it the world’s largest compressed-air energy storage project. Two hundred megawatts of energy would help 3CE serve 447 000 customers between Santa Cruz and Santa Barbara with 100% clean and renewable energy by 2030. This project will help California transition off fossil fuels without causing blackouts.

Compared to lithium-ion batteries that degrade and must be replaced every few years, compressed air batteries can store energy for decades without any loss of efficiency. Compressed air batteries are significantly more expensive than lithium-ion, but the battery’s longevity will outweigh the cost.

Hydrosor has figured out a way to capture and reuse the heat generated when the air is compressed, which means no gas needs to be burned. The company also found a way to dig caverns out of rock rather than salt. These projects have been used elsewhere in places with underground salt domes, but they depend partly on natural gas to heat compressed air as it leaves caverns to make it more efficient. Digging caverns out of rock opens up the possibility of compressed air battery storage worldwide.

3CE’s partnership with Hydrosor will allow for California’s renewable energy to be clean and sustainable. These compressed-air batteries will protect the planet and the people of California and will be an example for other states to implement.

 

 


 

 

Source Happy Eco News