Search for any green Service

Find green products from around the world in one place

California’s Compressed Air Batteries

California’s Compressed Air Batteries

Engineers and scientists have been developing ways to store unused energy from renewable sources as the world moves from fossil fuels to renewable energy. We’ve seen different types of batteries making their mark, including lithium-ion batteries, pumped hydro, tanks full of molten salt or silicon and more. Now, California has found a way to move past lithium into an even more sustainable battery – compressed air batteries. Compressed air batteries do not require lithium which is expensive and environmentally damaging to dig up. They store energy like solar and wind and are a 24/7 source of clean power for homes and businesses.

In 2021, Hydrostor opened two new compressed air energy storage facilities in California, which provide almost twice the storage capacity. Their facilities use surplus electricity from the grid to run an air compressor. The compressed air is stored in a big underground tank until the energy is needed. When needed, the energy will be released through a turbine to generate electricity that is fed back into the grid. Reheating the air as it is fed into the turbine increases the system’s efficiency.

Hydrosor’s system is optimized for system sizes of over 100 megawatts with 5 hours up to multi-day storage duration. This is longer than the four-hour standard for lithium-ion. Hydrostor projects that it can produce 60% to 65% of the electricity it consumes, which is a larger energy loss than lithium-ion batteries or similar types of storage. Hydrostor says its systems will store up to 10 GWh of energy, providing between eight and 12 hours of energy over a full discharge at close to its maximum rate.

Earlier this year, California’s Central Coast Community Energy (3CE) approved a 25-year contract with Hydrostor to construct a compressed-air energy storage facility, making it the world’s largest compressed-air energy storage project. Two hundred megawatts of energy would help 3CE serve 447 000 customers between Santa Cruz and Santa Barbara with 100% clean and renewable energy by 2030. This project will help California transition off fossil fuels without causing blackouts.

Compared to lithium-ion batteries that degrade and must be replaced every few years, compressed air batteries can store energy for decades without any loss of efficiency. Compressed air batteries are significantly more expensive than lithium-ion, but the battery’s longevity will outweigh the cost.

Hydrosor has figured out a way to capture and reuse the heat generated when the air is compressed, which means no gas needs to be burned. The company also found a way to dig caverns out of rock rather than salt. These projects have been used elsewhere in places with underground salt domes, but they depend partly on natural gas to heat compressed air as it leaves caverns to make it more efficient. Digging caverns out of rock opens up the possibility of compressed air battery storage worldwide.

3CE’s partnership with Hydrosor will allow for California’s renewable energy to be clean and sustainable. These compressed-air batteries will protect the planet and the people of California and will be an example for other states to implement.

 

 


 

 

Source Happy Eco News

European Investment Bank supports thermal, gravity energy storage projects

European Investment Bank supports thermal, gravity energy storage projects

The EU’s European Investment Bank has pledged support for a long-duration thermal energy storage project and a gravity-based energy storage demonstration project.

They have been selected among 15 projects defined as large-scale — each requiring capital costs of more than €7.5 million (US$8.5 million) — through EU Innovation Fund grants for Project Development Assistance (PDA), administered by the bank.

A total of 311 applications were received for clean energy or decarbonisation projects after the call for submissions opened last summer.

Of these, seven were selected to receive direct funding from a €1.1 billion budget and include hydrogen, carbon capture and storage, advanced solar cell manufacturing and other technologies.

The 15 among which the two energy storage projects were selected will receive PDA, technical assistance for various stages of their development.

The other 13 projects cover technologies including wind propulsion for cruise ships, hydrogen fuel cells for marine vessels, green methanol production, greenhouse gas (GHG) and carbon capture and storage, bioethanol, power-to-liquid for aviation fuels and other areas.

There is also an electric vehicle (EV) battery project, which will use ultra-pure electrolyte salt to improve lithium-ion batteries and a project to develop and upscale the synthesis of curved graphene and electrode production technologies.

 

Thermal energy storage project Sun2Store

Sun2Store, a 100MW/1,000MWh thermal energy storage project in Spain was selected for a PDA agreement. Using technology developed by US startup Malta Inc, the project will enable 10-hour duration storage of energy.

Malta Inc has developed a technology it calls ‘pumped heat’ electricity storage, which could provide up to 200 hours of storage, although the company is largely targeting 10 – 12 hour applications. It converts electricity to heat, which is then stored in molten salt. Simultaneously, the system produces cold energy stored in special vats of an anti-freeze-like cooling liquid.

The hot and cold energy are then converted back into electricity as required, using a temperature difference-driven heat engine. The company has raised funds from investors including Bill Gates’ Breakthrough Energy Ventures and is one of the founding members of the international Long Duration Energy Storage Council.

It has deals in place with equipment manufacturers Bechtel and Siemens Energy for co-development and supply of key components.

Funds have been granted to Malta Inc’s European affiliate company, Malta Iberia Pumped Heat Electricity Storage (Malta Iberia). The EIB will provide technical assistance to Malta Iberia, including an independent technology assessment, which will verify the storage facility’s key technical parameters.

Malta Inc recently announced plans for a similar-sized project in Canada.

 

Gravity storage project GraviSTORE

Scotland-headquartered startup Gravitricity was the other energy storage system industry recipient of a PDA agreement through the Innovation Fund.

The EIB will support Gravitricity’s plans to build a full scale 4-8MW project in a former mine shaft.

Located in mainland Europe, the project follows a 250kW demonstrator which operated in Scotland’s capital city Edinburgh throughout the summer and for which specialists appointed by the EIB have begun evaluating test results.

The results of the Edinburgh demonstrator are to be combined with a review of local revenue streams to produce a commercial risk assessment that will inform detailed design and development activities.

“We already have a high level of confidence in our technology and its ability to store energy effectively. What these studies will bring is increased understanding and confidence in how a full-scale project will play into a specific energy market,” said Chris Yendell, project development manager at Gravitricity.

Gravitricity’s energy storage solution works by raising weights in a deep shaft, with disused mine shafts currently being targeted by the firm, and releasing them when energy is required. Its proposed single weight full scale system could deliver up to 2MWh of energy storage, with future multi-weight systems having the potential for a capacity of 25MWh or more.

Alongside the test evaluations, the EIB has now also committed 120 days of consultancy time to advance the full scale project.

In October, Gravitricity engineers visited the recently mothballed Staříč mine in the Moravian Silesian Region of Czechia to investigate its potential for the project. The Gravitricity team is to head to mainland Europe later in January to further evaluate their shortlist, with a final selection decision expected within the next few months.

The firm is also exploring opportunities for a purpose-built prototype shaft at a brownfield location in the UK, where gravity storage could be combined with hydrogen and inter-seasonal heat storage.

Gravitricity story by Alice Grundy.

 


 

Source Energy Storage News