Search for any green Service

Find green products from around the world in one place

Using Bio-Based Materials to Build Cities

Using Bio-Based Materials to Build Cities

Did you know about 56% of the world’s population live in cities? The population numbers of urban dwellers are expected to double by 2050 when nearly 7 out of 10 people will live in cities. Cities are polluted due to industrial and motorized transport systems that rely on fossil fuels. The infrastructure that makes up cities is also constructed with carbon-intensive materials. As a result, cities account for over 70% of global carbon dioxide emissions.

We can’t eliminate these systems that make up our cities, but we can use bio-based materials to make them more sustainable. Carbon emissions could be significantly reduced if just a small percentage of new infrastructure in cities is constructed using sustainable bio-based materials. Moreover, these new buildings could also boost carbon storage and help us reach net zero.

Bio-based materials are catching on in the construction industry. They are materials that grow or are a natural part of the biosphere. Bio-based materials include Timber, straw, hemp, cork, clay, and earth. Besides being honest, these bio-based materials are renewable and have a lower, neutral, or negative embodied energy and carbon than traditional construction materials. Timber, for example, has around three times less embodied carbon than steel and over five times less than concrete.

The construction industry accounts for more than 39% of energy and process-related global carbon emissions. Using timber for building, it can store carbon rather than emit it. The Stockholm Wood City will be built in Sickla, Sweden, and is said to be the world’s biggest wooden city. Wooden construction means a significantly reduced climate impact during the construction phase and the whole life cycle. It also has a faster and quieter construction process.

Another bio-based material emerging in the construction industry is algae. Algae are being used in building facades as a sustainable way to generate heat and biomass for various purposes. The algae act like double glazing, but there is water and algae instead of air between the two panes. The algae will also absorb carbon dioxide and insulate the structure.

Hempcrete is a composite material made from hemp hurds, lime, and water. It is a strong, lightweight, and fire-resistant material that can be used for a variety of building applications, such as walls, floors, and roofs. Hempcrete is considered to be a carbon-negative bio-based material. It absorbs more carbon dioxide from the atmosphere than it produces during its production and use. Further, the production of hempcrete also requires less energy than the production of traditional building materials, such as concrete.

Because hempcrete is a good insulator, it can help to keep buildings cooler in the summer and warmer in the winter. This means that less energy is needed to heat and cool buildings, which reduces the amount of carbon dioxide that is emitted into the atmosphere.

Kenaf is a type of fiber that is made from the stems of the kenaf plant. It is a strong, durable, and lightweight fiber that can be used to make a variety of building materials, such as bricks, panels, and insulation.

Miscanthus is a type of grass that is grown for its biomass. It can be used to make a variety of building materials, such as boards, panels, and insulation.

Other benefits of using bio-based materials in the construction industry are that it helps to stimulate local economies, job creation, biodiversity and reforestation efforts. Using natural materials can help provide affordable and sustainable housing at scale.

While getting the entire construction industry on board with bio-based materials is challenging, some countries are trying to ensure this becomes the norm. The French government has ruled that any public construction financed by the state must contain at least 50% bio-based materials. Amsterdam requires that 20% of the city’s housing projects be constructed with bio-based materials starting in 2025.

As cities and population sizes grow, we will see a rise in carbon emissions. If the construction industry turns to using bio-based materials, there is a chance that we will see healthier cities and a healthier planet over time.

 

 


 

 

Source – Happy Eco News

 

Sustainable Housing that can be Recycled

Sustainable Housing that can be Recycled

Building a house from the ground up can be environmentally damaging. Buildings have a significant carbon footprint, with over 41% of global energy consumption attributed to buildings and structures. Buildings and materials also produce dangerous emissions that pollute our air, and the construction industry alone generates more than 170 tons of debris annually. There is also the issue of landfill waste, excessive use of water and noise pollution caused by the construction of buildings and houses.

SPEE Architecten, an architecture firm in the Netherlands, may have found a sustainable solution for building houses. Their projects focus on innovation and sustainability and creating healthy elements for both the residents and the environment. The architects created their newest project Speehuis House to create a site that minimally impacts the surrounding trees and wetlands with a structure that could be dismantled and recycled.

The house was built in a wooded area adjacent to a wetland area. The house’s form, size and layout are tailored to the needs of a family with three and adjoins SPEE Architects’ office premises. Large, strategically-placed windows offer a lot of natural light to the inner spaces and views of the outdoors. The entire house is made of circular and biobased materials. For example, the exterior walls and sloping roofs are made from untreated, high-density, biobased bamboo slats.

The team used Bamboo X-treme beams which consist of more than 90% of thermally modified bamboo strips. Bamboo absorbs a lot of CO2 during its growth, which remains stored throughout the product’s lifespan. Bamboo X-treme is extremely durable, dimensionally stable, and harder than most types of wood. When the bamboo fibers and resin are compressed at high temperatures, the natural sugar in the bamboo caramelizes, rendering it rot-resistant. These materials can be conveniently dismantled, adapted and recycled as need be.

Most of the home’s shell, including the stairs, interior doors, desks and cabinets, is made from cross-laminated timber that was chosen to avoid using concrete. The entire shell was prefabricated in less than a week. The wood was sourced from responsibly managed forests and was selected to create a natural and healthy indoor environment and a carbon sink. The architecture team estimates that over 93 000 kg of CO2 is stored within the building. In comparison, the same building built in concrete would produce 46,694 kg of CO2.

The home that SPEE Architecten has built shows us a future of what the construction industry can look like and how we can live more sustainably. The design is spacious and tasteful and allows for comfortable living without causing harm to the environment. If more architecture firms transitioned to building homes like the Speehuis House, the environmental impact from the construction industry would decrease substantially.

 

 


 

 

Source Happy Eco News

Packaging Solutions You Can Eat

Packaging Solutions You Can Eat

Tomorrow Machine has designed GoneShells, a biodegradable juice bottle made from potato starch.

Most of the packaging we use today is single-use, meaning it’s meant to serve one purpose and then discarded after. On top of that, a lot of the packaging cannot be recycled due to the assortment of materials used to make them. Globally, we produce about 400 million tons of plastic waste yearly and the plastic containers we throw away take up to 450 years to degrade. A Swedish product design studio specializing in package, product and food concepts may have a sustainable solution to our wasteful plastic consumption.

The designers have created GoneShells, a biodegradable juice bottle. The bottle is made from a potato-starch material and coated in a bio-based water-resistant barrier on both the inside and outside to preserve the liquid it contains. The packaging can be home-composted, eaten or dissolved in water. The bottle is designed to be peeled into a spiral formation, similar to peeling an orange. Doing so breaks the barrier and immediately begins the material’s decomposition process. As long as the decomposition process isn’t activated, the packaging works similarly to a traditional plastic bottle.

The product was designed to tackle landfill waste and address the lack of recycling and industrial compositing facilities in some parts of the world. The designers also wanted to create packaging that would last the same amount of time as the contents inside. The designers are also using existing equipment designed to process fossil fuel-based thermoplastics. These methods and inexpensive raw materials will help bring GoneShells to markets. The only other thing the designers are working on to make this packaging 100% sustainable is the foiling letters that appear on the bottles. They are working on a printing solution that will follow the bottle concept.

Tomorrow Machine is also known for its This Too Shall Pass line, where the packaging is made with the same short life span as the food they contain. Their olive oil packaging is made out of caramelized sugar coated with wax. To use the contents inside, you crack it open like an egg. Once it is open, the wax no longer protects, and sugar and the package will melt when it comes in contact with water. Their smoothie packaging is made of agar-agar seaweed gel, and water is designed for drinks with a short life and needs refrigeration. It can be opened like a juice box by picking the top. Like the GoneShells, their packaging for Basmati Rice is wrapped in beeswax and can be opened by peeling the packaging.

Tomorrow Machine has a very innovative way to reduce single-use waste. By introducing GoneShells to markets worldwide, we can reduce the raw materials used to produce plastic and drastically minimize the waste that ends up in the landfill every year.

 

 


 

 

Source Happy Eco News