Search for any green Service

Find green products from around the world in one place

Aloe Vera Insect Repellants from Aloe Vera Peel Waste

Aloe Vera Insect Repellants from Aloe Vera Peel Waste

Aloe vera is a succulent plant from the genus Aloe and is grown in various tropical, semi-tropical, and arid regions around the world. China, the U.S.A., Mexico, Australia and some Latin American countries are the major producers and exporters of aloe products. Aloes produce two substances: the gel, which is the clear, jelly-like substance found in the inner part and the aloe latex, which comes from just under the plant’s skin and is yellow in colour.

Because of these properties, aloe vera has been used for a variety of reasons, including treating wounds and skin problems or promoting healthy digestion. It’s known for its anti-inflammatory, antibacterial, and antiviral properties, which make it useful for treating burns, sunburns, and minor abrasions. Aloe vera gel can also help soothe and moisturize the skin. Aloe vera is also a common ingredient in skin care products, shampoos and conditioners.

While the inner parts of the aloe vera plant are in high demand, the peels are thrown away as agricultural waste. It is said that millions of tons of aloe vera peels get thrown away every year. The agricultural waste is used in the creation of biomass, which can improve the soil quality at aloe farms. While it is good that they are not being thrown into the landfill, agricultural waste does have some environmental consequences. For example, after some time, it can release methane and other greenhouse gases, which contribute to climate change.

Scientists from the American Chemical Society have found another alternative for the aloe vera peels, which can act as a more sustainable solution. They have found that the peels can ward off bugs and can act as a natural insecticide for crops. The aloe vera insect repellant discovery was made at an aloe vera production centre, where they noticed that insects were leaving the aloe vera plants alone but attacking other plant varieties, they had discovered natural aloe vera insect repellants.

To analyze how and why aloe vera insect repellants work, the team from the American Chemical Society dried out the peels in the dark at room temperature by blowing air over them. They then produced various extracts from the peels. The researchers found that in the hexane extract (used to extract edible oils from seeds and vegetables) contained octacosane. Octacosane is a compound with known mosquitocidal properties.

The researchers identified that there were over 20 compounds in aloe vera insect repellants that had antibacterial, antifungal or other potential health benefits. Additionally, they found six compounds within the peels that are known to have insecticidal properties. Best of all, they also concluded that the compounds were not toxic, meaning there are no safety concerns in using aloe-peel-based insecticides in crops.

The researchers still have to test how these aloe peel insecticides could work against agricultural pests. They hope that developing a natural pesticide could help farmers in areas where insects can be a major threat, including regions of Africa, the tropical and subtropical regions of the Americas, and the maize and millet fields in India. The researchers are also testing to see if the aloe vera peels also have anti-mosquito and anti-tick properties, which could eventually be used to develop a natural aloe vera insect repellant for consumer use.

This is an important discovery to help make aloe vera production and even other crop production more sustainable. If the researchers can develop this into a natural insecticide, it could help us move away from harmful pesticides and make farming less harmful to the environment. Furthermore, this might also be the beginning of what we can do with other plant peels and waste and how we can utilize them for other purposes instead of throwing them away.

 

 


 

 

Source  Happy Eco News

Made in America: A lithium supply chain for EV batteries

Made in America: A lithium supply chain for EV batteries

With the U.S. supplying 1 percent of the world’s lithium, there’s nowhere to go but up.

About 30 miles east of Reno, Nevada — past Tesla’s sprawling Gigafactory battery plant and the arid dusty grasslands of Northern Nevada — a startup is developing a large factory that could help unlock lithium, a key ingredient in electric vehicle batteries, from the earth.

The six-year-old company, Lilac Solutions, makes small white beads that can extract lithium from salty water deposits called brines, found around the world in places such as Argentina and Chile — and also Nevada and California. So-called ion-exchange beads are already used for various industrial applications such as cleaning water, but these are the first used for extracting lithium.

The U.S. is a bit player in the global lithium mining and processing game, dwarfed by other countries. The U.S. produces about 1 percent of the world’s lithium, while Australia, Chile, Argentina and China collectively produce over 90 percent. For decades, the only lithium that trickled out of the U.S. came from a small mine in Nevada run by chemical company Albemarle.

But as global sales of EVs have begun to rise dramatically — expected to grow from just under 10 percent of new passenger vehicle sales in 2021 to 23 percent by 2025 — lithium demand has gone through the roof. The global demand for lithium is expected to rise from 500,000 metric tons of lithium carbonate equivalent in 2021 to 3 to 4 million metric tons by 2030. The problem is clear: Relying on other countries for essentially all the critical minerals that make up EV batteries is not just a liability, it’s a missed opportunity.

That’s why a collective effort is underway to shift the tectonic plates under the world’s lithium supply chain to include the U.S. Mining giants, automakers, tech startups, lithium speculators, state and local governments and the Biden administration have all been trying to kickstart America’s domestic lithium initiatives. New lithium projects, from mining to processing, are proposed across states including California, Nevada, North Carolina, Tennessee and Maine.

American automakers including General Motors, Tesla and Ford will need hundreds of thousands of tons of lithium to meet growing demand for lithium-ion-powered electric vehicles.
Earlier this month, President Joe Biden unveiled a plan to dole out close to $3 billion in grants to 20 companies that are manufacturing, processing or mining key minerals, including lithium, for electric vehicle batteries. Lilac Solutions was chosen to negotiate a $50 million grant to help build its planned factory in Fernley, Nevada, near Reno.

The Biden administration’s Department of Energy funding follows the newly established law, the Inflation Reduction Act, which ties some tax credits for electric vehicles to battery minerals that are extracted, processed or recycled in the U.S. This spring the administration also used the Defense Production Act to increase the American production of battery minerals.

While China, Australia, Chile, Argentina and others are likely to dominate the lithium supply chain for the foreseeable future, domestic U.S. sources for mining, processing and recycling lithium will be important to help bolster the emerging American EV industry.

 

Mine the brine

Lilac, founded in 2016 and based in Oakland, California, has been quietly attracting interest from mining partners such as Australia’s Lake Resources as well as big-name investors. Last year, the company closed on a $150 million round of series B funding from Bill Gates’ Breakthrough Energy Ventures and Chris Sacca’s Lowercarbon Capital. Lilac’s investors also include T. Rowe Price, MIT’s The Engine and Tesla backer Valor Equity Partners.

The startup has drawn a who’s who of funders because of its potential ability to unlock lithium from the world’s brines. Much of the current global lithium supply is dug out of hard rock in mines like in Australia. But there are untapped resources in salty water deposits, where the lithium exists in low concentration and the mixture has high impurities. Lilac says its beads can suck out the lithium from the solution and leave the rest of the brine mixture intact to be returned back to the environment.

The massive brine lithium mines of South America — found in places such as Chile’s Atacama desert — use huge amounts of water and land and take 12 to 18 months to produce lithium through solar evaporation. A technology like Lilac’s could offer a more efficient, more sustainable method across a much smaller footprint.

Part of Lilac’s Series B funding is being spent on getting the Fernley factory into production, Lilac CEO Dave Snydacker told GreenBiz last month. The $50 million from the DOE will help accelerate production, and the agency said Lilac’s funding will create 150 new jobs.

Snydacker said the plant will come online in phases over the next two years and eventually will be able to make enough beads to support the extraction of 200,000 tons per year of lithium. That’s the equivalent of close to half of the amount of lithium produced globally last year. The funding doesn’t just add to Lilac’s war chest, it also adds validation and the spotlight of the White House.

At the event where Biden unveiled the EV battery minerals grants, 10 executives of companies, many of them startups, appeared behind Biden on a screen and four made remarks about how the funding would be used. Three of the four speakers were leaders of lithium production and processing companies: Albemarle; American Battery Technology Company; and ICL-IP America.

Albemarle plans to use a $150 million grant from the DOE to build a lithium concentrator plant at a mine in Kings Mountain, North Carolina. A concentrator increases the amount of lithium per volume and is one step in the process to get it ready to put into batteries. When it’s up and running, the Kings Mountain lithium supply chain would be able to produce and process enough lithium for 750,000 electric cars per year.

It makes sense for U.S. companies to try to tap into domestic lithium when it’s done sustainably and in a sensitive way for local communities.
Albemarle is also doubling the size of its lithium mine, Silver Peak, in Nevada, about 200 miles southeast from Fernley and Tesla’s Gigafactory. In Nevada alone, there are 17,000 prospecting claims for lithium, the Guardian recently reported.

 

Long road for U.S. lithium

Becoming a player in the global lithium supply chain won’t be easy for U.S. stakeholders. Companies looking to build new mines or reopen older ones face lengthy environmental review processes and are often challenged by local Indigenous communities. And rightly so, mining companies have long histories of polluting lands and neglecting the needs of groups that might use the lands as sacred sites, communal purposes or for hunting and fishing.

Most of the domestic critical mineral deposits needed for EV batteries — lithium, cobalt, nickel, copper — are near Native American reservations. Lithium Americas Corp. has faced resistance from both Native American tribes and environmentalists over its proposed lithium mine, Thacker Pass, in Nevada. By some estimates, Thacker Pass could contain the largest hard rock lithium deposit in the U.S.

American automakers including General Motors, Tesla and Ford will need hundreds of thousands of tons of lithium to meet growing demand for lithium-ion-powered electric vehicles. The industry won’t be able to source all of that domestically and fast enough, and South American lithium mines are likely to play a key role in the growing American EV boom.

But it makes sense for U.S. companies to try to tap into domestic lithium when it’s done sustainably and in a sensitive way for local communities. Investors are eager to put money into U.S. lithium initiatives — it can be cheaper to finance U.S. projects versus international ones — and there are shipping efficiencies if mining, processing and battery production projects can all be on the same continent.

With America supplying just 1 percent of the world’s lithium, there’s nowhere to go but up when it comes to American-made and -processed lithium. And for Lilac Solutions, if the technology works economically at a commercial scale as its supporters hope it does, its Nevada factory could be a key way for an American-made tech to be the one to help unlock the world’s lithium.

 

 


 

 

Source GreenBiz

Wyndham Hotels & Resorts in global sustainability drive

Wyndham Hotels & Resorts in global sustainability drive

As Head of Sourcing & Sustainability EMEA at Wyndham Hotels & Resorts, Philip Halanen says that succeeding in his complex role comes down to clear and cons.
Wyndham Hotels & Resorts is the world’s largest hotel franchising company, with approximately 9,000 hotels across over 95 countries. Through its network of approximately 819,000 rooms appealing to the everyday traveller, Wyndham commands a leading presence in the economy and midscale segments of the lodging industry.

 

 


 

Source Sustainability 

Google launches circular economy accelerator for start-ups as Starbucks allocates £1.4m to refill innovations

Google launches circular economy accelerator for start-ups as Starbucks allocates £1.4m to refill innovations

Google has today (4 October) opened a new accelerator called ‘Google for Startups: Circular Economy’ to applications from the US and the Asia-Pacific region.

The accelerator will provide startups and nonprofits with training, mentoring and technical support from Google’s engineers and other experts as they work to scale solutions that reduce waste.

Organisations working in the food, fashion, built environment and materials science sectors are being invited to apply to the accelerator before 14 November. They will need to be working on projects that reduce material use in the first instance, through innovative design or reuse solutions, or be developing recycling or compositing innovations.

Google said in a statement that it is “imperative we shift our management of materials towards a circular economy model” for environmental, economic and social reasons.

 

 

Bring it Back Fund

In related news, Starbucks UK has announced seven projects to receive a share of its £1.4 ‘Bring it Back’ fund, launched in a bid to support innovative reuse solutions for food and beverage packaging. The money has been raised through the coffee chain’s charge on single-use paper cups and environmental charity Hubbub has been assisting Starbucks UK with the fund allocation.

In the public and third sectors, funding will be provided to Keep Scotland Beautiful as it trials a large-scale reusable cup scheme in the Highlands. Charities RECOUP and PECT will also receive funding for research into perceptions around reusable packaging and practical barriers to adoption, with Peterborough as a base.

In the private sector, reuse-as-a-service startup junee will be supported to undertake trials with Mercato Metropolitano food market in South London and packaging cleaning facility network Again will test doorstep collection for takeaway packaging in central London.

Further North, in Bradford, returnable packaging system Green Street will be supported to expand to more cades and restaurants and to trial a digital rewards platform. And, finally, in Edinburgh, Reath Technology will receive funding for their next-generation reuse tracking software using RFID technology.

Hubbub’s co-founder and director Gavin Ellis said: “The winning projects offer a strong mix of innovative solutions, from brand new reuse system trials to behaviour change research and funding developments in technology. With this funding, we will be able to test and learn from real-world trials and hopefully demonstrate that reuse systems are safe and easy to use, and can benefit the food and drink industry, consumers and the environment.”

Starbucks UK’s general manager Alex Rayner added: “It is important for us as a company that we continue to drive industry-wide innovation, as we work to increase reusability and inspire greater reusables uptake in local communities across the UK.”

 


 

Source edie

World’s biggest carbon capture plant set for Wyoming

World’s biggest carbon capture plant set for Wyoming

The US state of Wyoming is set to welcome the world’s largest direct air capture plant for the removal of atmospheric carbon dioxide. Called Project Bison, the facility is slated to swing into action next year and, all going to plan, will scale up its operations by the end of the decade to suck up five million tons of CO2 each year, and safely lock it away underground.

Project Bison enters the fray as the first massively scalable direct air capture plant in the US, according to the company behind the technology, Carbon Capture. The LA-based outfit has teamed up with Dallas-based company Frontier Carbon Solutions on the venture, which will lock the captured carbon away underground to prevent it from re-entering the atmosphere.

 

Carbon capture activity is expected to kick off at Project Bison in 2023

 

For its part, Carbon Capture describes its system as “deeply modular.” The reactors slot into shipping-container-sized modules that can be stacked into tiers. This enables upgrades to individual reactors, for example, or for different types of plug-and-play sorbent cartridges to be slotted in to suit different climates or seasons. These modules can be grouped together in clusters to share resources like power and heat, with those clusters then able to be scaled up to form gigantic arrays.

Wyoming was chosen as the site for Project Bison owing to its ready access to renewable energy sources and friendly regulatory conditions for carbon storage. Pending approvals, it will be the first direct air capture plant to use Class IV wells for carbon sequestration, injecting it into deep saline aquifers. Phase 1 carbon capture operations are expected to begin next year, removing around 10,000 tons annually.

Carbon Capture says there are no practical limits when it comes to scaling up the project, however, and plans to do just that to remove 200,000 tons a year by 2026, one megaton a year by 2028 and then five megatons a year by 2030. At this point, it expects Project Bison to be the largest single atmospheric carbon removal project in the world.

When that time comes, it may have some competition, however. Aside from Clime works’ efforts in this area, we’ve seen London startup Brilliant Planet outline plans to offer gigaton-scale carbon capture using algae, and Australian startup Southern Green Gas’s vision of capturing billions of tons each year. The US government is also investing billions of dollars into carbon capture, with the aim of developing regional hubs that can help drive down the considerable cost of the technology.

This is no small sticking point when it comes to making carbon capture a viable weapon in the fight against climate change, considering the size of the problem. Clime works’ first plant captured carbon at around US$600 a ton, but it aims to do so at around $100 a ton as it scales up, while others are aiming even lower.

Carbon Capture will be betting big on the effects of the Biden government’s recently passed Inflation Reduction Act to make its carbon capture commercially viable. The act sees tax credits for carbon capture plants increase from $50 per ton to as much as $180 if the carbon is stored underground, and is designed to accelerate innovations in the carbon removal sector.

“With the passage of the Inflation Reduction Act, the proliferation of companies seeking high-quality carbon removal credits, and a disruptive low-cost technology, we now have the ingredients needed to scale DAC (direct air capture) to megaton levels by the end of this decade,” said Adrian Corless, CEO and CTO, Carbon Capture Inc. “We plan to have our first DAC modules fielded by the end of next year and to continue installing capacity as quickly as modules come off our production line. Our goal is to leverage economies of scale to offer the lowest priced DAC-based carbon removal credits in the market.”

 


 

Source New Atlas

This robotically fabricated structure aims to promote low carbon construction

This robotically fabricated structure aims to promote low carbon construction

A team of students and researchers from the University of Michigan have created a robotically-fabricated structure made entirely from timber.
They aimed to promote low-carbon construction, creating a complex architectural structure from local materials.
The designers hope it can serve as an example of how robotic construction can enable more sustainable forms of construction and minimize waste.

A team of students and researchers has shown how, with the help of robots, it’s possible to build an intricate pavilion using only small pieces of timber.

The Robotically Fabricated Structure is the result of a project by the Adel Design Research (ADR) Laboratory at the University of Michigan’s Taubman College of Architecture and Urban Planning.

 

The robotically fabricated structure was built using only small pieces of timber. Image: ADR Laboratory

 

The ambition was to promote low-carbon construction, by showing it’s possible to create complex architectural structures using wood that is sourced from the local region rather than imported.

Custom algorithms were used to calculate the optimal arrangement for the timber 2x4s, removing the need for any larger beams within the structure.

 

Robots assembled the components into a series of prefabricated frames, which were then delivered to site and slotted together by hand.

“The coupling of custom algorithms and robotic fabrication enables the feasible realisation of bespoke building components that are otherwise difficult or costly to achieve through conventional means and methods, with minimal construction waste,” explained ADR, which is led by professor Arash Adel.

“Short elements enable the use of indigenous trees that cannot easily produce full-length building elements, construction and manufacturing off-cuts, and lumber elements reclaimed from the deconstruction of buildings, ultimately contributing to a more sustainable practice,” said the team.

 

The tunnel is made up of 20 robotically fabricated frames. Image: ADR Laboratory

 

Robotically Fabricated Structure has been installed in the Matthaei Botanical Gardens in Ann Arbor, where it can be used as a place of rest and shelter, or host exhibitions and performances.

Raised on an oval-shaped timber platform, it takes the form of a curved tunnel with an integrated bench seat wrapping on of its edges.

The tunnel is made up of 20 robotically fabricated frames, which themselves are made up of various components. Each one is slightly different, which gives the structure its undulating shape.

As each piece of wood has the same thickness, it was possible to design these frames so that they slot together. This helped to reduce the need for screw fixings.

The design is longlisted for Dezeen Awards 2022 in the small building category.

The designers hope it can serve as an example of how robotic construction can enable more sustainable forms of construction and minimise waste.

 

Robots assembled the components into a series of prefabricated frames. Image: ADR Laboratory

 


 

Source World Economic Forum

The world’s first biodegradable sneakers are here

The world’s first biodegradable sneakers are here

Blueview sneakers are the first biodegradable sneakers in the world. These sneakers are made entirely out of plant-based materials, which means we can make anything sustainable if we’re bold enough.

According to Inhabitat, these sneakers will completely break down when they’re exposed to air. Scientists worked for over six years to come up with a formula that uses plants to create a knitted upper material that can work on shoes.

 

 

The majority of shoes are made of petroleum-based plastics that don’t degrade even after hundreds of years. But, every single part of Blueview sneakers is completely compostable.

Most importantly, the sneakers provide comfortable wear thanks to the soft and flexible knitted uppers. The insole is contoured to soften the steps, which all results in a comfortable fit.

The sneaker design is simple and elegant. These sneakers can be worn everywhere, from a restaurant to a sailboat. Plus, 5% is donated to support ocean conservation efforts for every pair bought.

 


 

Source Green citizen

Artificial Photosynthesis can produce food in absence of sunlight: Study

Artificial Photosynthesis can produce food in absence of sunlight: Study

Experiments revealed that a diverse range of food-producing organisms, including green algae, yeast, and fungal mycelium that produces mushrooms, can be grown in the dark directly on the acetate-rich electrolyzer output. This technology is approximately four times more energy efficient than growing algae photosynthetically.

 

 

According to a study conducted by the University of California, scientists have discovered a way to create food that is not dependent on sunlight by using artificial photosynthesis. A two-step electrocatalytic process converts carbon dioxide, electricity, and water into acetate.

In order to grow, food-producing organisms consume acetate in the dark. The hybrid organic-inorganic system has the potential to increase the efficiency of sunlight conversion into food by up to 18 times for some foods.

For millions of years, plants have evolved photosynthesis to convert water, carbon dioxide, and sunlight energy into plant biomass and the foods we eat. However, this process is inefficient, with only about 1% of the energy found in sunlight reaching the plant. Scientists at UC Riverside and the University of Delaware have discovered a way to create food without the need for biological photosynthesis by using artificial photosynthesis.

The study, which was published in the journal Nature Food, employs a two-step electrocatalytic process to convert carbon dioxide, electricity, and water into acetate, the main component of vinegar. In order to grow, food-producing organisms consume acetate in the dark. This hybrid organic-inorganic system, when combined with solar panels to generate the electricity to power the electrocatalysis, could increase the conversion efficiency of sunlight into food by up to 18 times for some foods.

“We sought to identify a new way of producing food that could break through the limits normally imposed by biological photosynthesis,” said corresponding author Robert Jinkerson, an assistant professor of chemical and environmental engineering at UC Riverside.

The output of the electrolyzer was optimized to support the growth of food-producing organisms in order to integrate all of the system’s components. Electrolyzers are electrical devices that convert raw materials such as carbon dioxide into useful molecules and products. The amount of acetate produced was increased while the amount of salt used was decreased, resulting in the most acetate ever produced in an electrolyzer to date.

“We were able to achieve a high selectivity towards acetate that cannot be accessed through conventional CO2 electrolysis routes using a state-of-the-art two-step tandem CO2 electrolysis setup developed in our laboratory,” said corresponding author Feng Jiao of the University of Delaware.

Experiments revealed that a diverse range of food-producing organisms, including green algae, yeast, and fungal mycelium that produces mushrooms, can be grown in the dark directly on the acetate-rich electrolyzer output. This technology is approximately four times more energy efficient than growing algae photosynthetically. Yeast production is approximately 18- fold more energy-efficient than traditional methods of cultivation that use corn sugar.

“We were able to grow food-producing organisms in the absence of biological photosynthesis. These organisms are typically grown on sugars derived from plants or inputs derived from petroleum – a product of biological photosynthesis that occurred millions of years ago. This technology is a more efficient way of converting solar energy into food than biological photosynthesis,” said Elizabeth Hann, a doctoral candidate in the Jinkerson Lab and co-lead author of the study.

 


 

Source Krishi Jagran

Algae biofuel back from dead, now with carbon capture

Algae biofuel back from dead, now with carbon capture

Algae biofuel stakeholders have been stuck in the doldrums for years, but in an odd twist of fate, the fossil fuel industry could help algae make a comeback. Apparently the new plan is to pair algae farming with waste carbon from gas power plants and other industrial operations. In addition to biofuel, algae farming can also produce animal feed, fish food, nutritional supplements and toiletries for people, and bioplastic products.

 

Why Algae Biofuel?
CleanTechnica spilled plenty of ink on the area of algae biofuel research some years ago, during the Obama administration. Unlike other energy crops, algae can be grown in ponds or human-made structures without taking arable land out of circulation, and it has a rapid growth-to-harvest cycle. The high oil content of certain strains of algae is another leading attraction, and the algae R&D pathway can lead in a carbon negative direction.

On the down side, figuring out an economical way to cultivate algae and extract the oil at an industrial scale is a challenging endeavor, especially when the over-arching goal is to reduce carbon emissions rather than adding them.

The picture was looking bright in the early 2000s, up through the Obama administration. However, by the time former President Obama left office in 2016, oil prices were crashing. The relatively low cost of petroleum seemed to put the idea of a bioeconomy fueled by algae biofuel to bed.

Nevertheless, the Energy Department’s National Renewable Energy Laboratory was among those continuing to invest in algae research projects, and the algae field continued to branch off into new angles. In 2018, for example, the Energy Department was funding the algae bioplastics angle. In 2020 researchers were exploring the idea of hooking up with high speed 3-D printing. The Mars mission has also sparked a new burst of interest in the algae biofuel field.

 

Algae biofuel could have another moment in the sun, now that more federal dollars are pouring into carbon capture-and-recycling technology (photo by Dennis Schroeder, NREL).

 

Carbon Capture To The Rescue
In January of this year the Energy Department’s Bioenergy Technologies Office (BETO) launched the new AlgaePrize competition for students, aimed at developing “the next generation of bioeconomy professionals by expanding novel solutions to production, processing, and new product development on the way to gigaton-scale algae commercialization for fuel, food, products, and carbon dioxide utilization/sequestration.”

If you caught that thing about carbon dioxide, that’s where the happy dance for natural gas stakeholders comes in. Carbon capture from flue gas could turn out to be a value-added element that improves the bottom line for algae farming.

That’s where BETO seems to be heading. Last week the office announced a $16.5 million round of funding for six algae projects related to carbon dioxide capture.

The six projects were selected for their potential to demonstrate an improvement in carbon capture by algal systems leading to biofuels and other products, while also cutting costs and decreasing overall greenhouse gas emissions.

“Algae can grow on waste CO2, functioning as a carbon sink. This algae biomass can then be used to create low or no-emissions biofuels and bioproducts which displace GHGs,” BETO noted.

 

Natural Gas Hearts Algae Biofuel
Not all six of the new BETO-funded projects are focusing on carbon captured from flue gas. The Colorado School of Mines, for example, plans to put its pond-grown algae system through its paces using concentrated carbon dioxide from direct air capture.

Another awardee, Colorado State University, is working on an algal system that functions efficiently on atmospheric carbon.

Three of the other awardees are focusing on carbon dioxide from industrial fossil energy users including power plants: Dioxide Materials, MicroBio Engineering, and the University of Maryland’s Center for Environmental Sciences. A fourth awardee in the point source class is Global Algae Innovations, which is focusing more specifically on flue gas from a naphtha-fired power plant.

If the biofuel angle doesn’t work out at commercial scale, other aspects of the algae biofuel market could come into play.

Market analysts are forecasting growth in the algae market in the coming years. Consumers are on the prowl for healthy diet supplements, especially among the up-and-coming generation.

“Rise in the acceptance of algae-based food products and a growing popularity of vegan food are expected to emerge as trends in the algae market. Algae are already widely employed in bioplastics, cosmetics, food, bio-packaging, biofuel, and pharmaceutical and nutraceutical products,” observes the firm Transparency Market Research.

 

The Long Algae Biofuel Game Of ExxonMobil
All this activity puts the on-again, off-again algae biofuel journey of ExxonMobil into perspective.

ExxonMobil spearheaded the charge into shale gas after the Bush Administration lifted Clean Water Act regulations in 2006, and the company continued to double down on gas acquisitions even as prices plummeted.

 

Next Steps For Algae
ExxonMobil, for one, is excited. The company lists the following benefits compared to corn ethanol and other biofuels made from land-based energy crops:

Unlike making ethanol and biodiesel, producing algae does not compete with sources of food, rendering the food-vs.-fuel quandary a moot point.
Because algae can be produced in brackish water, including seawater, its production will not strain freshwater resources the way ethanol does.
Algae consume CO2, and on a life-cycle basis have a much lower emissions profile than corn ethanol given the energy used to make fertilizer, distill the ethanol, and to farm and transport the latter.
Algae can yield more biofuel per acre than plant-based biofuels – currently about 1,500 gallons of fuel per acre, per year. That’s almost five times more fuel per acre than from sugar cane or corn.
That’s all well and good, but it’s about time for ExxonMobil and other fossil energy stakeholders to stop digging more carbon up from the ground and start taking giant steps towards a more sustainable energy profile.

Capturing carbon dioxide at power plants is a step in the right direction, but it doesn’t change anything in terms of the local environmental impacts of fossil energy extraction, and it doesn’t make a dent in the amount of fugitive emissions escaping from drilling sites, transportation networks and storage facilities.

To the extent that algae farming at gas power plants enables more gas extraction, it’s just another form of greenhouse gas whack-a-mole.

Either way, it looks like algae farming at power plants has a window of opportunity. Last November ExxonMobil re-upped its collaboration with Synthetic Genomics, under the new name of Viridos. If you have any thoughts about that, drop us a note in the comment thread.

 


 

Source  CleanTechnica

WSP USA to manage world’s largest green hydrogen underground storage project

WSP USA to manage world’s largest green hydrogen underground storage project

WSP USA was awarded the engineering, procurement and construction management contract (EPCM) for the underground storage portion and related surface facilities of a major clean energy storage infrastructure to build the world’s largest green hydrogen production and storage facility.

WSP was selected by a joint venture between Magnum Development and Mitsubishi Power to lead all EPCM phases of the ACES Delta underground storage facility in Utah, beginning with Phase I, which consists of the developing two large salt caverns capable of holding a total of 11,000 metric tons of hydrogen.

The firm will also be responsible for the solution mining infrastructure, water and power supply facilities, brine management, and will assist with environmental compliance for the energy hub.

The ACES Delta project involves converting renewable power into green hydrogen that can be stored in commercial-scale solution mined caverns. When completed it will provide 100 percent clean energy seasonal storage capabilities, thereby deploying technologies and strategies essential to a decarbonized future for the western U.S. power grid.

“Green hydrogen is the future in renewables,” said Andres Fernandez, national hydrogen market lead for WSP, a leading engineering and professional services consultancy. “Green hydrogen is particularly unique because it only uses renewable sources combined with advance technology in electrolysis to generate hydrogen. WSP is honored to be part of an innovative team that will deliver the next generation of renewable energy and drive the green energy transition.”

ACES Delta will capture intermittent renewable generation and shape the product into reliable and dispatchable electricity, making the project’s seasonal storage capabilities ideal for integrating renewable energy facilities with the existing energy infrastructure. Each cavern will hold the equivalent of 150 gigawatt hours (GWh) of carbon-free dispatchable energy, which is equivalent to 40,000 megawatts of lithium ion batteries. This stored green hydrogen becomes an energy reserve that can be released to produce fuel for electric power generation at any time.

 

The project will use Utah’s unique geological salt domes to store green hydrogen in two massive salt caverns. Image: Mitsubishi Power

 

The overall project will enhance grid reliability and efficiency through optimization of existing transmission line loads, while creating the ability to move excess generation from highly productive renewable energy generation months with little electric load to cover demand during high-load periods. It also reduces the need to overbuild renewables and new transmission assets.

The massive natural geological salt formation is adjacent to the Intermountain Power Project (IPP) near Delta, with transmission interconnections to major demand centers throughout the west and significant renewable energy resource opportunities in the region.

“Using salt caverns for seasonal energy storage is a significant opportunity to empower hydrogen as an energy carrier and significantly expand energy storage resources throughout the U.S.,” Fernandez said. “This will further support the increased build-out of renewable energy thus reducing America’s carbon footprint. WSP is leveraging decades of experience in underground storage experience to provide a full suite of services around the hydrogen economy. This project reinforces WSP’s leadership in underground storage and positions the company to become a key player in developing hydrogen hubs.”

After nearly two years of engineering effort, WSP is grateful for the opportunity to support ACES Delta for the project execution phase and contribute to the advancement of the hydrogen economy in the U.S., at a time when the industry is poised for significant growth. This project consolidates WSP global leadership in underground liquid and gas storage facilities, including hydrogen, and aligns with WSP’s mission to help its clients and communities become Future Ready®.

 

About WSP USA

WSP USA is the U.S. operating company of WSP, one of the world’s leading engineering and professional services firms. Dedicated to serving local communities, we are engineers, planners, technical experts, strategic advisors and construction management professionals. WSP USA designs lasting solutions in the buildings, transportation, energy, water and environment markets. With more than 12,000 employees in 200 offices across the U.S., we partner with our clients to help communities prosper. wsp.com

 


 

Source CSR WIRE