Search for any green Service

Find green products from around the world in one place

What does true sustainability look like in the hotel industry?

What does true sustainability look like in the hotel industry?

In a bid to become more environmentally sustainable, Raffles Hotel Singapore has reimagined its signature drink: the Singapore Sling, a fruity gin-based cocktail dating back to the 1900s.

In 2018, the 5-star ultra luxury hotel partnered with spirits company Proof & Company’s ecoSPIRITS programme to transform the drink’s life cycle. Using a closed-loop distribution system, they were able to eliminate several thousand kilograms of packaging waste annually. Furthermore, for every 25 Singapore Slings served, a native tree is planted in Kalimantan and Sumatran rainforests.

According to consultancy firm Deloitte’s calculations, every glass of Singapore Sling now emits 200 fewer grams of carbon dioxide than before.

Raffles Hotel is not the only establishment raising its sustainability game. In 2019, Marriott International, the world’s largest hotel chain, phased out single-use plastic toiletry bottles in favour of larger pump dispenser bottles. Meanwhile, Hilton committed to reducing food waste by 50 per cent by 2030.

Many of these initiatives are driven by consumer demand for more sustainable accommodation, which has skyrocketed in recent years. According to Booking.com’s 2021 Sustainable Travel Report, 81 per cent of travellers said that they want to stay in sustainable accommodation in the upcoming year, a significant jump from 62 per cent in 2016.

Local hospitality and tourism institutions are also putting greater pressure on hotels to decarbonise. In March 2022, the Singapore Hotel Association (SHA) and Singapore Tourism Board (STB) launched a Hotel Sustainability Roadmap which urged establishments to reduce emissions by 2030 and reach net-zero emissions by 2050.

“There’s just more pressure all around now,” said Eric Ricaurte, founder of hospitality consulting firm Greenview. “While previously we only saw incremental changes like reusing linen towels, hotels are now also paying attention to issues like energy and carbon. We’re seeing sustainability appear on the radars of hotels everywhere.”

But amidst hotels’ greater focus on sustainability, how many of these changes are greenwashing — initiatives designed to mislead guests and present a false environmentally responsible public image?

 

There is some great work happening, but there’s a lot of PR-driven hot air too.

– Tim Williamson, customer director, Responsible Travel

 

Greenwashing, or genuine change?

There’s a mix of both, says Tim Williamson, customer director of Responsible Travel, an activist company seeking to design conscious trips.

“There is some great work happening, but there’s a lot of PR-driven hot air too,” said Williamson. “For example, while some hotels have set net zero targets, they may ‘hide behind’ carbon offsetting to reach these goals, which is not the same as a real reduction in their emissions.”

According to Ricaurte, another form of greenwashing is when hotels offer an asymmetrical representation of their environmental impact. He pointed to some hotels which may have removed plastic straws, but still use large amounts of plastic in other aspects of their operations.

To identify hotels that genuinely care about sustainability, Ricaurte said guests could consider whether the hotel pays attention to both lower-hanging fruit — like providing plant-based options on their restaurant menus — as well as formal certifications.

There is currently a growing list of globally-recognised sustainability certifications for the hotel sector, including the Green Key eco-label, Green Globe, as well as Booking.com’s recently launched Travel Sustainable Badge. But Williamson says not all certifications are created equally. Less credible schemes may only require hotels to undertake a self-assessment, rather than be evaluated by an independent third party.

“There is also the issue of what is relevant,” said Williamson. “Reducing water consumption may be less of a priority for a hotel in Scotland than for a hotel in a drought-ridden area of southern Spain, but many green certification schemes don’t make this distinction. This means businesses may have a green badge but still be failing to address the challenges most pressing in their local area.”

Rather than relying solely on certifications, Williamson instead encouraged consumers to “look behind the labels” and ask for written policies and specific examples.

“What percentage of employees are local, and do they receive a fair wage? How much of the produce is sourced from local suppliers? What are they doing to help protect and restore nature, and how are they cutting food waste? Don’t take all labels at face value,” he said.

 

Transparency trade-offs

While green marketing is on the rise, not all hotels have opted to integrate sustainability into their branding. Raffles Hotel Singapore, for example, features little about sustainability on its website.

“We think that sustainability and saving the planet shouldn’t be used as marketing highlights,” explained general manager Christian Westbeld. “They should be something that you really live by. We all have to do the right thing.”

Westbeld says that when the hotel closed its doors for extensive restoration from December 2017 to August 2019, sustainability was high on the agenda. The environmental footprint was taken into consideration in all aspects, from the plumbing systems to kitchen equipment, and even the linen in each guest suite.

“For example, the windows in each suite are now double glazed to better retain cold temperatures, therefore encouraging guests to use air-conditioning for shorter periods of time,” said Westbeld.

However, most of this information is not highlighted to travellers on Raffles Hotel’s marketing platforms.

Dr Victor Nian, Chief Executive Officer of Singapore-based think tank Centre for Strategic Energy and Resources, said such an approach eliminates the issue of greenwashing entirely. However, he cautioned that transparency is also very important.

“If a hotel publishes a sustainability report on their website, it’s often a positive sign that they are trying to do something. It also gives you a chance to compare sustainability among different hotels,” he said, adding that such reports are often endorsed by a verified body.

“But if they don’t publish anything, people won’t know what they are doing at all,” he said.

Laura Houldsworth, Asia Pacific managing director at Booking.com, an online travel agency, shared similar views: “We think hotels should be encouraged to share their sustainability initiatives. We believe in educating travellers and empowering them with the right knowledge, so they know how to avoid these pitfalls.”

 

An uphill battle

Westbeld admits it can be difficult to prioritise sustainability as an ultra luxury destination.

“We will never compromise on service standards and guest experience,” he said. “For example, we won’t openly recommend guests not to change sheets. It is a guest’s choice — they can approach us and say they only want to change it every other day. But we don’t compromise on hygiene and comfort.”

Hotels also face constraints that they may not be able to immediately address.

According to Ricaurte, one of the biggest challenges in reducing emissions is the design of the building itself, since the key moments when those design decisions are made may not have factored in sustainability. This results in the hotel lagging behind on building sustainability standards.

Hotels are often also constrained by their location and local energy grid.

“In Singapore, if the electricity grid is mostly powered by fossil fuels, there’s very little hotels can do to decarbonise that,” said Dr Nian.

While there are still ways hotels can reduce their energy consumption, such as improving the air-conditioning efficiency or exploring rooftop solar, Dr Nian said that these measures often have limited impact in driving down absolute emissions. Hotels may also be reluctant to implement these changes due to cost barriers, he added.

Ultimately, as demand for sustainability grows, the notion of luxury may need to be redefined for travellers and hoteliers alike to meet their sustainability goals, says Responsible Travel’s Williamson.

“Luxury doesn’t have to be all about air-con and all-inclusives. It can also be about bespoke, authentic experiences and great personal service,” he said. “It could be a small, locally-owned hotel with its own vegetable garden and hosts who know the best off-the-beaten-track spots for hiking, food and culture. Or a small ship cruise which really gets you into the nooks and crannies of a place, instead of a colossal liner.”

“High-value, low-impact tourism can benefit local communities and important conservation work too. Everyone wins.”

 


 

Source Eco Business

Asian companies claim they are going net-zero — but are their targets realistic, ambitious or greenwash?

Asian companies claim they are going net-zero — but are their targets realistic, ambitious or greenwash?

The race is on for the business world to figure out how to sustain economic growth and go carbon-free.

The penny seems to be dropping that avoiding climate action comes with financial risks. Last October, 200 of the world’s largest multinational companies said they would achieve net-zero carbon emissions by 2050. Among them were Asian companies in sin industries linked with spotty environmental records such as Sinopec and Asia Pacific Resources International Limited (APRIL). Chevron, Philip Morris and DuPont were also among those that made pledges.

By 2050, climate change will shrink the global economy by 3 per cent as drought, flooding, crop failure and infrastructure damage become more severe — unless drastic action is taken to bend the curve on global warming, according to a report by the Economist Intelligence Unit.

The Covid-19 pandemic — which has been called a “dress rehearsal” for climate change — has accelerated the urgency to mitigate the impacts of climate change which cost the global economy billions every year.

“Suddenly, corporates have realised that if we’re going for a 1.5 degrees Celsius cap on global warming [the goal of the Paris Agreement on climate change], we have to hit net zero by 2030. It’ll be very expensive to decarbonise any later,” said Malavika Bambawale, Asia Pacific head of sustainability solutions at Engie Impact, a decarbonisation consultancy.

 

“What is the cost of not decarbonising? That is the question businesses should really be asking themselves.”
Pratima Divgi, director, Hong Kong, Asean, Oceania, CDP

 

Western businesses have led the way, with the likes of Microsoft saying it will make “the biggest commitment in our history” by removing all of the carbon it has put into the atmosphere since its founding in 1975. Asian companies have been slower to commit. “A lot of Asian companies are further down the supply chain, so they can hide for longer,” says Bambawale.

But climate action in a region that produces more than half of global emissions is cranking up. Of the 1,200 or so firms that have signed up to the Science-Based Targets initiative (SBTi), which helps companies cut their emissions in line with the Paris Agreement, 250 Asian companies have set carbon-cutting targets or are in the process of getting targets approved — a 57 per cent increase between 2019 and 2020. Forty-eight of those 250 firms have aligned their business models with the Paris agreement. 

“From a small base, corporate decarbonisation is growing in Asia Pacific,” says Pratima Divgi, Hong Kong, Southeast Asia, Australia and New Zealand director at CDP, a carbon disclosure non-proft that co-developed the SBTi. Companies that have signed up to the SBTi include Hong Kong real estate firm Swire Properties, Chinese computer giant Lenovo, and Malaysian textile firm Tai Wah Garments Industry.

National-level policy commitments, like China, Korea and Japan’s net-zero declarations over the past six months have set the tone for Asian corporate decarbonisation. Competition is helping. Australian supermarket chain Coles declared a 2050 net zero target six months after rival Woolworths did the same, and Singaporean real estate firm City Developments Limited (CDL) made a net zero pledge the week after competitor Frasers Property. Gojek and Grab are racing to be the first ride-hailing app in Southeast Asia to declare a decarbonisation target.

“Now that market leaders such as CDL have made net-zero commitments, it will be harder for their competitors to sit and wait,” says Bambawale.

Malaysian oil and gas giant Petronas announced in October that it would hit net-zero by 2050, a month after PetroChina, the region’s largest oil company, said it would be “near-zero” by mid-century.

 

Aspiration versus reality

But questions hang over how Asia’s big-polluters will realise their declared targets. Ensuring the big emitters share detailed plans and a budget to support their carbon neutral declarations is key for accountability.

PetroChina’s announcement came with “frustratingly little detail”, commented renewables consultancy Wood MacKenzie. The oil giant aims to spend just 1-2 per cent of its total budget on renewable energy between now and 2025. This compares to Italian oil major Eni’s planned 20 per cent of total spend on renewables by 2023 and BP’s 33 per cent by 2030.

Petronas’ own 2050 net-zero pledge is an “aspiration” and not a science-based target that aligns the firm with the Paris Agreement.

“Aspirational targets can only go so far — science-based targets also need to clearly allocate interim short- to medium-term targets to work out what this transformation means to your business and value chain,” says Divgi.

Setting a science-based carbon reduction target takes time. Singapore-based transport firm ComfortDelGro has given itself two years to set science-based goals, but the company avoided giving a carbon reduction timeline in its announcement earlier this month.

Other companies are also being selective with the information they make public. This could be because they do not want to reveal the extent to which they intend on decarbonising, or because they do not have a plan yet. CDL has pledged that it will be net-zero by 2030 — 20 years ahead of competitor Frasers Property — but has declined to give further detail on how it will meet this target.

CDL’s carbon commitment is limited to its wholly-owned assets and developments under its direct control, while Frasers Property is aiming to remove emissions from its entire value chain.

 

Why carbon dieting is difficult

For major emitters like oil and gas firms, decarbonising means transforming their business model without going out of business. Petronas told Eco-Business that meeting its 2050 target “won’t be easy”, and would require the company to “re-strategise how we do our business, with the focus no longer being on profitability or production capacity alone”.

Petronas plans include hydrocarbon flaring and venting, developing low and zero carbon fuels, capturing emissions and investing in nature-based solutions. It also plans to cap emissions to 49.5 million tonnes of carbon dioxide-equivalent for its Malaysia operations by 2024, and increase renewable energy capacity to 3,000 megawatts by the same year.

Meeting its target would “requires us to strike an equitable balance between providing low carbon solutions while still ensuring energy security and business profitability,” said the company’s group health, safety, security and environment vice-president, Dzafri Sham Ahmad.

But removing the carbon from a company’s operations is no longer deemed enough. The indirect emissions that occur in the entire value chain — known as scope 3 emissions — are becoming the new business imperative. A new report from CDP found that emissions from a company’s supply chain are on average 11.4 times higher than its operational emissions – double previous estimates. ExxonMobil’s scope 3 emissions from the use of its products exceed the national annual emissions of Canada, it was revealed in January.

 

“Achieving this aspiration will require us to re-strategise how we do our business, with the focus no longer being on profitability or production capacity alone.”

Dzafri Sham Ahmad, vice-president, group health, safety, security and environment, Petronas

 

Electric vehicle makers such as Telsa are now asking questions about the emissions of their nickel suppliers while computer giant Apple wants to source low-carbon semiconductor chips. But tackling scope 3 emissions is tricky. For instance, how do Singapore construction companies reduce the imported carbon of building materials sourced from China, where electricity is generated from coal? And how does a building owner persuade its tenants to turn down the air-conditioning?

“Reducing scope 3 emissions looks easy enough from the top down. But for people in the field operating the assets it can be a nightmare,” says J. Sarvaiya, an engineer who’s an expert in decarbonisation.

Balancing the carbon books by sourcing renewable energy is also difficult in a region where fossil fuels are still the dominant power source, and where a diversity of regulatory landscapes has made scaling renewables hard and where prices remain high in places. This has led Asian companies to focus on reducing energy consumption first, before looking at procuring renewables, notes Bambawale.

But energy capping is not easy in a high-growth region with escalating energy needs. Southeast Asia’s energy consumption is growing by 4 per cent a year — twice the rate of the rest of the world — and much of that demand comes through cooling as global temperatures rise. Some 30 per cent of a business’s energy bill in this region goes on cooling, says Bambawale.

 

Offset or cut?

Facing so many challenges, it’s tempting for businesses to buy their way to net-zero. Carbon offsets, where companies fund projects that capture or store greenhouse gas emissions to offset their own, are becoming an increasingly popular path to carbon neutrality. Singapore state investor Temasek was one of Asia’s first companies to neutralise the carbon emissions of its operations last year, and did so primarily by buying carbon offsets. Petronas is also relying on offsets as part of its ‘measure, reduce, offset’ net-zero drive.

But offsets are drawing growing scepticism because they enable businesses to carry on as usual, without reducing their actual footprint. “Many companies find that it’s cheaper to reach net-zero by purchasing offsets. It may cost more to replace old technology with more efficient kit than buying offsets,” says Sarvaiya.

Offsets are a necessary piece of the decarbonisation puzzle — but the quality of offset is key, says Bambawale. Companies should ensure that an offset is additional—that is, the carbon reduction would not have happened without the company’s effort. It should also have permanent, rather than temporary, impact. And it should not cause any sort of environmental or social harm. Proving all of that is difficult. “Companies could spend years checking and validating that an offset is actually happening,” says Bambawale.

Offsets will get more problematic the warmer the world gets, Sarvaiya points out. The ability of plants to absorb carbon declines in a warmer world, so more trees will have to be planted to balance the carbon books. Buying renewable energy faces a similar issue. Every one degree increase of surface temperature reduces the efficiency of solar panels by 0.5 per cent.

Companies are also looking to emerging technologies to help them hit carbon goals. In Singapore, concrete producer Pan-United and Keppel Data Centres are part of a consortium that is banking on carbon capture, use and storage technology that won’t be online for another five to 10 years to reduce the carbon impact of the city-state’s oil refining, petrochemicals and chemicals sectors.

Heavy-emitting sectors such as steel production, aviation and shipping have high hopes for hydrogen power, which is considered the missing piece of the renewables puzzle. But questions over cost and transportation make hydrogen a fuel for the future for now. “Moonshot ideas should be the last step,” says Bambawale.

 

Why net-zero is not just hot air

In Southeast Asia, where governments have shown little interest in decarbonising their economies in their post-pandemic recovery plans, there is less incentive for businesses to cut their carbon footprints amid the struggle to stay afloat.

But a wave of commitments to decarbonisation in the past 18 months will likely lead to more. Scores of businesses have signed up for science-based targets during the pandemic, which has played a part in pushing others towards net-zero, says Divgi, adding that a Southeast Asian bank recently committed to SBTi whose suppliers’ emissions were 400 times its own.

Another indicator of interest in corporate climate action is the Task Force on Climate-Related Financial Disclosures (TCFD), a global framework for companies to disclose the financial risks they face from climate change. CDP has seen a 20 per cent increase in TCFD disclosures in Asia over the last year, Divgi notes.

More companies are trying to assess the financial implications of the transition to a low-carbon economy, and the more progressive companies have recognised that calculating climate risk is not a reporting exercise, it’s a strategic one, says Divgi.

“We’re not saying that it [decarbonising] is without problems. There’s a huge level of transformation involved, but climate change presents both a financial and an existential challenge for many businesses,” she says.

“What is the cost of not decarbonising — that is the question that businesses should really be asking themselves.”

 


 

By Robin Hicks

Source Eco Business

Has ‘geoengineering’ arrived in China?

Has ‘geoengineering’ arrived in China?

In August, a team of researchers climbed up to Sichuan’s Dagu glacier and carried out an experiment. By covering 500 square metres with a geotextile cloth 5-8mm thick, they hoped to lessen the glacier’s summer melt.

The experiment, a joint undertaking between the State Key Laboratory of Cryospheric Science (SKLCS) and the Dagu Glacier Scenic Area Bureau, drew media attention. The local Chengdu Commercial Daily described it as China’s first attempt to use “geoengineering” to reduce glacier melting, saying that if the results were good the approach would be optimised and applied elsewhere.

But despite the enthusiasm in the media, geoengineering is controversial.

In its 5th Assessment Report, the UN’s Intergovernmental Panel on Climate Change defined geoengineering as “a broad set of methods and technologies operating on a large scale that aim to deliberately alter the climate system in order to alleviate the impacts of climate change.”

These techniques are often divided into two broad categories: solar radiation management (SRM), which aims to temporarily cool the Earth by reflecting sunlight back into space; and carbon dioxide removal (CDR), the physical removal and permanent sequestration of carbon dioxide from the atmosphere, creating “negative emissions”. One example of CDR is bioenergy with carbon capture and storage, or BECCS.

Commercial CDR trials are underway, but controversy over governance and unknown climate risks have prevented deployment of SRM approaches.

Does the Chinese media’s warm reception for the Dagu glacier experiment mean the “geoengineering” concept has arrived in China, and may even be rolled out at scale?

 

Defining geoengineering

Wang Feiteng, deputy director of the SKLCS, told China Dialogue that the experiment was based on his work on retaining snow for the Beijing Winter Olympics Organising Committee, and that this research developed out of his own interest.

With global warming worsening, China’s glaciers have been shrinking more rapidly since the 1990s. A 2014 survey found that 82 per cent of them had shrunk since the 1950s, losing 18 per cent of their total surface area.

Some want to use radical interventions to control and combat the impacts of climate change. But the climate is complex, and some approaches may have cross-border consequences for agriculture, society and economies. As yet there are no international mechanisms for governing these risks.

There are precedents for glacier-wrapping. Swiss people living near the Rhône glacier have been doing it for more than a decade. Geotextiles are laid over the Presena glacier in northern Italy after every skiing season – with coverage now reaching 100,000 square metres. These efforts are made by businesses or local communities in an attempt to protect skiing and tourism.

John Moore, chief scientist at Beijing Normal University’s College of Global Change and Earth System and Professor at Lapland University, Finland, thinks experiments on the scale of Dagu glacier shouldn’t be classed as geoengineering:

“Small glacier projects are not geoengineering because they don’t have global impacts,” he says. Moore led a five-year Chinese research project, up until December 2019, looking into the potential impacts of geoengineering, with a budget of 14 million yuan (US$2 million).

He cited a recent experiment at the Great Barrier Reef as an example. In March, an Australian team used a modified turbine to spray salt water into the air over Broadhurst Reef, off Townsville, Queensland. The salt mixes with low-altitude cloud, which then becomes more reflective, sending more sunlight back into space and cooling the ocean below. This “marine cloud brightening” SRM technique is relatively cost-effective. If applied at a large enough scale, it could generate meaningful impacts.

In theory, changing the microclimate of the Great Barrier Reef could have a knock-on effect elsewhere. But Moore says that depends on whether these changes can be measurable and significant. He called the Australian experiment “more like an attempt at trying to preserve the status quo of a particular ecosystem”.

Moore used the idea of “leverage” to describe the relationship between climate interventions and global impacts: “You’re going to go to some sensitive part of the whole climate system and play with that in some way that it has a huge leverage.” He mentioned Pine Island and Thwaites Glacier in the Antarctic as examples, saying these glaciers are the biggest potential sources of sea-level rise over the coming two centuries, because ocean warming has destabilised them, so buttressing them could have huge benefits.

Janos Pasztor, executive director of the Carnegie Climate Governance Initiative (C2G), agrees that glacier-wrapping experiments like that at Dagu could have a beneficial effect – but that the broader impacts should also be studied. As glacier-wrapping probably would not affect the climate globally, it would likely not be regarded as geoengineering under most definitions.

C2G works to catalyse the creation of governance frameworks for emerging approaches to alter the climate, while taking an impartial stance on their potential deployment.

Pasztor pointed out that there are differing definitions of geoengineering, and that different actors can use the term in quite different ways, for different effects. This can create misunderstanding, which is not helpful for governance, so he prefers to use the umbrella terms carbon dioxide removal (CDR) and solar radiation modification (SRM), rather than a single all-encompassing term.

He also suggests that the definition is not as important as the ultimate impact. And he notes that several small but simultaneous interventions could have a far-reaching cumulative effect.

“Even in the case of covering the glaciers, the point is not whether or not you define it as geoengineering. The point is what impact it could have, and whether it needs to be done. Glacier-wrapping may have the positive impact of ‘saving’ the glacier. But it may have some other negative impacts as well, that people haven’t discovered.”

 

Global governance challenges

Globally, some other cryosphere research is getting more attention than the Dagu experiment. For example, the Arctic Ice Project, initiated by Stanford University lecturer Leslie Field, aims to spread tiny silicon beads onto young, thin ice to increase reflectivity. This is one of only a few attempts to move SRM techniques from computer models to the real world.

Another project in the works is the Stratospheric Controlled Perturbation Experiment (SCoPEx), proposed by Harvard scientists. This would see the release of small quantities of different materials (eg calcium carbonate) at an altitude of 20km, and then measuring the effects on the atmosphere and light scattering.

Models suggest that it would be quick-acting and its direct costs relatively cheap. Consequently, “stratospheric aerosol injection” is one of the most-discussed SRM technologies – but questions about who would control such technologies, and about potential adverse and unequal impacts create significant governance challenges, and have prompted some strong opposition.

Although these experiments are quite different, and are relatively small-scale, Pasztor says both require “some kind of guardrails that don’t exist, as research also needs to be regulated to follow the precautionary principle, and make sure that things happen the right way.”

Climate interventions could have unpredictable outcomes. Uneven changes in temperature or precipitation, for example, could widen regional climate differences, exacerbating food insecurity, flooding or environmental degradation. The lack of international governance means it is not possible for international society to exercise oversight of any state, company or individual that decides to apply a particular intervention.

In 2009, several scientists signed up to the Oxford Principles to try and provide guidance for geoengineering research and governance. The principles state geoengineering should be regulated as a public good, with public participation and transparency, and that governance should precede deployment.

Chen Ying, a member of the Chinese geoengineering research team led by John Moore, and a researcher with the Chinese Academy of Social Sciences’ Ecological Civilisation Institute, said that the governance-first approach should be followed, but effective implementation is difficult, as modelling, field trials and deployment all have different impacts, and experiments are carried out at a range of scales.

Moore said: “If you’re going to have any actual kind of international agreements, which really are needed, I think that you probably need to get very specific, rather than trying to have some overall kind of frame.”

Given the lack of international mechanisms, the SCoPEx project has set up an independent advisory committee to produce a governance framework and ensure research is transparent and responsible. But some have questioned if the committee is independent enough, and worry that carrying out field trials before adequate consensus has formed may lead to a relaxed attitude to risks.

Pasztor said it was not C2G’s place to comment on the governance efforts of specific projects, but said researchers have a duty to evaluate the physical and social impacts of their work, ensure transparency of plans and funding, and encourage stakeholder participation. Moore stressed that taking a diverse range of views on board is crucial, whatever governance framework is used.

The existing UN Framework Convention on Climate Change has a clear mandate for carbon removal as part of mitigation, but there is no equivalent international treaties or processes on SRM. A number of international rules on SRM are specific to certain technologies or issues, leaving an insufficient basis for global governance.

For example, the UN Convention on the Law of the Sea has articles applicable only to marine cloud brightening, while the Vienna Convention for the Protection of the Ozone Layer and the associated Montreal Protocol only focuses on potential damage to the ozone layer from aerosols.

On the form of future governance of SRM, Pasztor said: “There are many national, regional and international institutions that could have a role or would have a role to play, as well as civil society and the private sector. It’s a question of how one brings those together, and how additional institutional needs are then considered and decided.”

For example, he said, deployment of SRM would need a global atmospheric monitoring system – which the World Meteorological Organisation already has, although it would need adjustments and improvements to be suitable.

“The problem we are facing now is that most actors simply don’t know enough about these technologies, these approaches. They don’t know what is the latest science. They don’t know what are the risks and the benefits. They don’t realise what their governance challenges are. And that is so important because without that, it’s very difficult to even decide whether or not to make use of these approaches, or to make some international laws about this.” he said.

 

China’s role

The 2015-19 Chinese geoengineering research project led by John Moore was a joint undertaking by Beijing Normal University, Zhejiang University and the Chinese Academy of Sciences. It modelled and analysed the mechanisms and climate impacts of geoengineering, and evaluated its integrated social impacts and possible governance frameworks.

“What China has done in terms of geoengineering is very significant globally,” Moore said, describing it as a “larger and more sustained effort than people have been able to do so far internationally.” To increase the applicability of its findings, the research team tried to link its models with agricultural, economic and health outcomes. For example, what economic impact will differing levels of carbon release from Arctic permafrost have in various geoengineering or emissions scenarios?

China is vulnerable to climate disasters, and the project sparked speculation that it plans to roll out geoengineering in response. Moore said that so far, the project’s experiments are limited to computer models and the laboratory. He says China will not take action before an international consensus has formed, and covering one glacier or cloud-seeding do not count as geoengineering.

Chen Ying has noted that very few people in China are discussing such interventions, and academics and policymakers are not up to speed on the topic – and so it is too soon to talk of deployment. “If academics and the government don’t take the field seriously, it’s even harder for the public to understand it,” she said.

In China, prospects are brighter for deployment of carbon dioxide removal than solar-radiation management. In September, Xi Jinping announced at the UN General Assembly that China will achieve carbon neutrality by 2060. Chen Ying thinks this will first require decarbonisation of industry and technological innovation, along with more sustainable consumption. But the huge emissions cuts needed to achieve the 1.5C warming target makes international large-scale deployment of CDR likely.

But, she warns, it takes time to develop and deploy technology. For example, more mature and economic technologies are required for the carbon capture and storage part of BECCS, as well as assurances that the carbon will not leak back into the atmosphere. Application of BECCS should also minimise the impact on the environment and properly handle its relationship with food security, water and soil conservation. “There are a lot of issues and blanks, and early research and preparation are essential.”

 

The last chance

Regardless of the impact of the Dagu glacier experiment, it reflects a determination from the scientific community to identify ways to responds to climate change. Wang Feiteng said that another glacier-covering experiment will be carried out next May to test different materials and arrangements.

Moore thinks there is also an emotional element at play in these experiments, which mean people are keen to see them go ahead. “You have to provide some kind of light or some path at the end of the tunnel,” he said. “Maybe geoengineering is something that might provide a role to provide a better future. And governments really are keen to look at that.”

Chen Ying would like to see academics and the public more open to the idea of geoengineering. “Some people think it’s all pie in the sky and not worth researching, but that’s not the case. Others think it’s too radical, but that’s not right either. And researching it doesn’t mean you support deployment. Those are different things.”

Pasztor worries that in spite of recently announced commitments of many countries to reach carbon neutrality by 2050, and more recently by China by 2060, governments on the whole still aren’t taking emission reductions or removals seriously enough, despite the world still being far off achieving the 1.5-2C goal of the Paris Agreement. He warns that it could take 10 to 15 years of international research to decide if even “quick” methods like SRM are feasible, or how they might be governed.

“And if we’re not careful, we could end up in a few years, maybe a decade or so from now, where some country or countries unilaterally decide that there is no other option left than solar radiation modification, because it seems to them a fairly cheap and fairly quick way of reducing temperatures,” he said.

“That could lead to significant problems, including with other countries that did not agree. And unfortunately, it would be terrible for the world to end up in a situation where that was the only choice left.”

This article was originally published on China Dialogue under a Creative Commons licence.

 


 

Source: Eco Business

Oxford Offsetting Principles: Academics launch new guidelines for carbon offsetting

Oxford Offsetting Principles: Academics launch new guidelines for carbon offsetting

Academics from the University of Oxford have today launched a new standard for carbon offsetting, in a bid to ensure the growing number of net zero strategies adopted by state and corporate actors are effective in their stated goal of halting increases in the atmospheric concentrations of greenhouse gases.

As things currently stand, a patchwork of voluntary and regulatory standards govern approaches to offsetting and how net zero is defined, a lack of cohesion that critics claim has led to a glut of low-quality offsets that undermine the credibility and effectiveness of net zero strategies.

The hope is that new principles, dubbed The Oxford Offsetting Principles, will help provide greater clarity to the broader industry on what consitutes a credible offset and become a key resources for cities, governments, and companies looking to avoid accusations of ‘greenwash’ as they seek to design and deliver robust net zero commitments that align with climate science.

“Adopting the Oxford Offsetting Principles and publicising their adoption can create the demand for offsets necessary to reach net zero emissions,” explained Professor Cameron Hepburn of the university’s Smith School of Enterprise and Environment. “Creating demand for long-lived greenhouse gas removal and storage is vital, whether we like it or not, to reaching the Paris goals.”

Credible net zero aligned offsetting is contingent on a number of key elements, according to the guidelines. First up, companies or state actors must prioritise emissions reduction before embarking on offsetting programmes, demonstrate the environmental integrity of any offsets that are sourced by the organisation, and disclose how all purchased offsets are then used.

Next, they should prioritise offsets that directly remove carbon from the atmosphere and offsets that remove carbon from the atmosphere permanently or almost permanently by shuttling it into long-lived storage.

Finally, all credible strategies should support the development of a ‘net zero aligned’ offset market.

Dr Ben Caldecott, Lombard Odier associate professor of sustainable finance and COP26 strategy advisor for finance, predicted the principles could prove a boon to the growing number of financial institutions looking to clean up their operations and portfolios.

“The Oxford Offsetting Principles can be used by financial institutions to design and deliver credible plans for achieving net zero,” he said. “Financial institutions can also assess the plans of investees and borrowers. This can inform risk and impact analysis, as well as engagement and stewardship activities.”

The new report also highlights the need for a “credible approach” to nature-based carbon offsets, such as forest restoration.

Professor Nathalie Seddon, director of the university’s Nature-based Solutions Initiative, emphasised that nature-based offsetting should be approached carefully. “Irrespective of any carbon benefits, scaling up the protection and restoration of ecosystems is vital,” she said. “While carbon offsets can help to fund some of this work, nature-based solutions should be valued and funded for the broad suite of benefits they bring, now and into the future. However, nature-based solutions are not an alternative to geological storage and rapid decarbonisation of the economy.”

 


 

By Cecilia Keating

Source: Business Green