Search for any green Service

Find green products from around the world in one place

AI to Protect Sea Turtle Populations

AI to Protect Sea Turtle Populations

Harnessing the Power of AI to Protect Sea Turtle Populations

Scientists and conservationists using AI to protect sea turtle populations are providing innovative solutions to address the challenges faced by these remarkable creatures. From monitoring nests to tracking migration, identifying species, and developing conservation methods, AI technology offers unprecedented opportunities to protect and ensure the survival of sea turtle populations. This blog post explores how AI revolutionizes sea turtle conservation and highlights specific examples of its application in monitoring, tracking, and species identification.

 

AI to Protect Sea Turtle Nests

Sea turtle nests are vulnerable to a number of threats, including predators, disturbances, and natural disasters. Traditionally, monitoring sea turtle nests has been a labor-intensive and time-consuming process. Scientists would have to patrol beaches on foot, looking for nests. This process was often inefficient and unreliable.

Using AI to protect sea turtles has revolutionized the way sea turtle nests are monitored. AI algorithms can detect and track sea turtle nests through the analysis of satellite imagery. This is a much more efficient and effective way to monitor nests, as it allows conservationists to cover a wider area and monitor nests in real-time.

AI algorithms can also identify potential threats to sea turtle nests. For example, AI algorithms can identify areas where nests are at risk of being washed away by storms or where nests are disturbed by humans or animals. Conservationists can then use this information to take steps to protect the nests.

AI-powered tracking systems can revolutionize our understanding of sea turtle migration patterns. Traditionally, tracking sea turtles has been a laborious and time-consuming process. Scientists would have to attach tags to sea turtles and then wait for the tags to wash up on shore or be retrieved by fishermen. This process was often inefficient and unreliable.

AI-powered tracking systems have revolutionized our understanding of sea turtle migration patterns. These systems use satellite tags to track sea turtles migrating across the ocean. The tags collect data on the sea turtles’ movements, such as their speed, location, and depth. This data is then transmitted to satellites, which send it back to scientists.

AI tracking helps to identify crucial nesting and feeding grounds. The data collected by AI-powered tracking systems can be used to identify crucial nesting and feeding grounds for sea turtles. This information can then protect these areas from development or other threats. Scientists have used AI sea turtle tracking systems to identify important nesting grounds for loggerhead sea turtles in the Mediterranean Sea. This information has been used to designate these areas as marine protected areas, which helps to protect the turtles from predators and other threats.

AI-powered tracking systems help to mitigate threats such as entanglement in fishing nets. AI-powered tracking systems can also reduce threats such as entanglement in fishing nets. Scientists can use the data collected by these systems to identify areas where sea turtles are at risk of entanglement. This information can then be used to educate fishermen about the risks and develop new fishing methods to reduce the risk of entanglement. Scientists have used AI-powered tracking systems to identify areas in the Gulf of Mexico where sea turtles are at risk of entanglement in shrimp trawls. This information has been used to educate fishermen about the risks and to develop new fishing methods that reduce the risk of entanglement.

 

Identifying Sea Turtle Species

AI algorithms can accurately identify different sea turtle species based on unique facial features. Sea turtles have unique facial features that can be used to identify them. For example, loggerhead sea turtles have a distinctive “W”-shaped ridge on their carapace, while green sea turtles have a more rounded carapace.

One example of this is the facial recognition work being done by Google DeepMind. The organization has developed an AI algorithm that can identify sea turtle species with great accuracy. This algorithm is trained on a dataset of images of sea turtles, and it is able to learn the unique facial features of each species and of individual animals within a population. One of the greatest challenges of sea turtle conservation is identifying them; getting a turtle to be still long enough to read a tag generally means capturing the creature. Facial recognition AI to protect sea turtles saves them from traumatic capture and release events.

This breakthrough in AI to protect sea turtles aids researchers in tracking population numbers, assessing species at risk, and tailoring conservation efforts accordingly. The ability to accurately identify sea turtle species is essential for conservation efforts. By knowing which species are present in an area, researchers can track population numbers and assess which species are at risk. This information can then be used to tailor conservation efforts accordingly.

See also: World’s Smallest, Most Endangered Sea Turtles Hatch For 1st Time In 75 Years In Louisiana.

 

Developing Innovative Conservation Methods

Using AI to protect sea turtle populations requires immense processing power that was not available even ten years go. This advanced research facilitates the development of novel conservation methods tailored to protect sea turtles from various threats. By analyzing vast datasets, AI algorithms reveal patterns, predict environmental changes, and enable the creation of targeted conservation strategies. Leveraging AI to protect sea turtle populations, conservationists can devise comprehensive plans to address habitat loss, pollution, climate change, and other critical challenges faced by sea turtles. With AI to protect sea turtle populations, conservation efforts can achieve greater efficiency and effectiveness in safeguarding these magnificent creatures.

Artificial intelligence is revolutionizing sea turtle conservation, offering a range of transformative applications that aid in monitoring, tracking, species identification, and innovative conservation methods. The examples provided, such as the Sea Turtle Tracker app, the Sea Turtle Conservancy’s satellite-based tracking, and the University of Florida’s species identification algorithm, showcase the immense potential of AI in protecting sea turtle populations. As AI to protect sea turtle technology evolves, we anticipate even more groundbreaking applications that will enhance our understanding of sea turtles, support effective conservation strategies, and secure a brighter future for these incredible marine creatures.

 

 


 

 

Source   Happy Eco News

Asian companies claim they are going net-zero — but are their targets realistic, ambitious or greenwash?

Asian companies claim they are going net-zero — but are their targets realistic, ambitious or greenwash?

The race is on for the business world to figure out how to sustain economic growth and go carbon-free.

The penny seems to be dropping that avoiding climate action comes with financial risks. Last October, 200 of the world’s largest multinational companies said they would achieve net-zero carbon emissions by 2050. Among them were Asian companies in sin industries linked with spotty environmental records such as Sinopec and Asia Pacific Resources International Limited (APRIL). Chevron, Philip Morris and DuPont were also among those that made pledges.

By 2050, climate change will shrink the global economy by 3 per cent as drought, flooding, crop failure and infrastructure damage become more severe — unless drastic action is taken to bend the curve on global warming, according to a report by the Economist Intelligence Unit.

The Covid-19 pandemic — which has been called a “dress rehearsal” for climate change — has accelerated the urgency to mitigate the impacts of climate change which cost the global economy billions every year.

“Suddenly, corporates have realised that if we’re going for a 1.5 degrees Celsius cap on global warming [the goal of the Paris Agreement on climate change], we have to hit net zero by 2030. It’ll be very expensive to decarbonise any later,” said Malavika Bambawale, Asia Pacific head of sustainability solutions at Engie Impact, a decarbonisation consultancy.

 

“What is the cost of not decarbonising? That is the question businesses should really be asking themselves.”
Pratima Divgi, director, Hong Kong, Asean, Oceania, CDP

 

Western businesses have led the way, with the likes of Microsoft saying it will make “the biggest commitment in our history” by removing all of the carbon it has put into the atmosphere since its founding in 1975. Asian companies have been slower to commit. “A lot of Asian companies are further down the supply chain, so they can hide for longer,” says Bambawale.

But climate action in a region that produces more than half of global emissions is cranking up. Of the 1,200 or so firms that have signed up to the Science-Based Targets initiative (SBTi), which helps companies cut their emissions in line with the Paris Agreement, 250 Asian companies have set carbon-cutting targets or are in the process of getting targets approved — a 57 per cent increase between 2019 and 2020. Forty-eight of those 250 firms have aligned their business models with the Paris agreement. 

“From a small base, corporate decarbonisation is growing in Asia Pacific,” says Pratima Divgi, Hong Kong, Southeast Asia, Australia and New Zealand director at CDP, a carbon disclosure non-proft that co-developed the SBTi. Companies that have signed up to the SBTi include Hong Kong real estate firm Swire Properties, Chinese computer giant Lenovo, and Malaysian textile firm Tai Wah Garments Industry.

National-level policy commitments, like China, Korea and Japan’s net-zero declarations over the past six months have set the tone for Asian corporate decarbonisation. Competition is helping. Australian supermarket chain Coles declared a 2050 net zero target six months after rival Woolworths did the same, and Singaporean real estate firm City Developments Limited (CDL) made a net zero pledge the week after competitor Frasers Property. Gojek and Grab are racing to be the first ride-hailing app in Southeast Asia to declare a decarbonisation target.

“Now that market leaders such as CDL have made net-zero commitments, it will be harder for their competitors to sit and wait,” says Bambawale.

Malaysian oil and gas giant Petronas announced in October that it would hit net-zero by 2050, a month after PetroChina, the region’s largest oil company, said it would be “near-zero” by mid-century.

 

Aspiration versus reality

But questions hang over how Asia’s big-polluters will realise their declared targets. Ensuring the big emitters share detailed plans and a budget to support their carbon neutral declarations is key for accountability.

PetroChina’s announcement came with “frustratingly little detail”, commented renewables consultancy Wood MacKenzie. The oil giant aims to spend just 1-2 per cent of its total budget on renewable energy between now and 2025. This compares to Italian oil major Eni’s planned 20 per cent of total spend on renewables by 2023 and BP’s 33 per cent by 2030.

Petronas’ own 2050 net-zero pledge is an “aspiration” and not a science-based target that aligns the firm with the Paris Agreement.

“Aspirational targets can only go so far — science-based targets also need to clearly allocate interim short- to medium-term targets to work out what this transformation means to your business and value chain,” says Divgi.

Setting a science-based carbon reduction target takes time. Singapore-based transport firm ComfortDelGro has given itself two years to set science-based goals, but the company avoided giving a carbon reduction timeline in its announcement earlier this month.

Other companies are also being selective with the information they make public. This could be because they do not want to reveal the extent to which they intend on decarbonising, or because they do not have a plan yet. CDL has pledged that it will be net-zero by 2030 — 20 years ahead of competitor Frasers Property — but has declined to give further detail on how it will meet this target.

CDL’s carbon commitment is limited to its wholly-owned assets and developments under its direct control, while Frasers Property is aiming to remove emissions from its entire value chain.

 

Why carbon dieting is difficult

For major emitters like oil and gas firms, decarbonising means transforming their business model without going out of business. Petronas told Eco-Business that meeting its 2050 target “won’t be easy”, and would require the company to “re-strategise how we do our business, with the focus no longer being on profitability or production capacity alone”.

Petronas plans include hydrocarbon flaring and venting, developing low and zero carbon fuels, capturing emissions and investing in nature-based solutions. It also plans to cap emissions to 49.5 million tonnes of carbon dioxide-equivalent for its Malaysia operations by 2024, and increase renewable energy capacity to 3,000 megawatts by the same year.

Meeting its target would “requires us to strike an equitable balance between providing low carbon solutions while still ensuring energy security and business profitability,” said the company’s group health, safety, security and environment vice-president, Dzafri Sham Ahmad.

But removing the carbon from a company’s operations is no longer deemed enough. The indirect emissions that occur in the entire value chain — known as scope 3 emissions — are becoming the new business imperative. A new report from CDP found that emissions from a company’s supply chain are on average 11.4 times higher than its operational emissions – double previous estimates. ExxonMobil’s scope 3 emissions from the use of its products exceed the national annual emissions of Canada, it was revealed in January.

 

“Achieving this aspiration will require us to re-strategise how we do our business, with the focus no longer being on profitability or production capacity alone.”

Dzafri Sham Ahmad, vice-president, group health, safety, security and environment, Petronas

 

Electric vehicle makers such as Telsa are now asking questions about the emissions of their nickel suppliers while computer giant Apple wants to source low-carbon semiconductor chips. But tackling scope 3 emissions is tricky. For instance, how do Singapore construction companies reduce the imported carbon of building materials sourced from China, where electricity is generated from coal? And how does a building owner persuade its tenants to turn down the air-conditioning?

“Reducing scope 3 emissions looks easy enough from the top down. But for people in the field operating the assets it can be a nightmare,” says J. Sarvaiya, an engineer who’s an expert in decarbonisation.

Balancing the carbon books by sourcing renewable energy is also difficult in a region where fossil fuels are still the dominant power source, and where a diversity of regulatory landscapes has made scaling renewables hard and where prices remain high in places. This has led Asian companies to focus on reducing energy consumption first, before looking at procuring renewables, notes Bambawale.

But energy capping is not easy in a high-growth region with escalating energy needs. Southeast Asia’s energy consumption is growing by 4 per cent a year — twice the rate of the rest of the world — and much of that demand comes through cooling as global temperatures rise. Some 30 per cent of a business’s energy bill in this region goes on cooling, says Bambawale.

 

Offset or cut?

Facing so many challenges, it’s tempting for businesses to buy their way to net-zero. Carbon offsets, where companies fund projects that capture or store greenhouse gas emissions to offset their own, are becoming an increasingly popular path to carbon neutrality. Singapore state investor Temasek was one of Asia’s first companies to neutralise the carbon emissions of its operations last year, and did so primarily by buying carbon offsets. Petronas is also relying on offsets as part of its ‘measure, reduce, offset’ net-zero drive.

But offsets are drawing growing scepticism because they enable businesses to carry on as usual, without reducing their actual footprint. “Many companies find that it’s cheaper to reach net-zero by purchasing offsets. It may cost more to replace old technology with more efficient kit than buying offsets,” says Sarvaiya.

Offsets are a necessary piece of the decarbonisation puzzle — but the quality of offset is key, says Bambawale. Companies should ensure that an offset is additional—that is, the carbon reduction would not have happened without the company’s effort. It should also have permanent, rather than temporary, impact. And it should not cause any sort of environmental or social harm. Proving all of that is difficult. “Companies could spend years checking and validating that an offset is actually happening,” says Bambawale.

Offsets will get more problematic the warmer the world gets, Sarvaiya points out. The ability of plants to absorb carbon declines in a warmer world, so more trees will have to be planted to balance the carbon books. Buying renewable energy faces a similar issue. Every one degree increase of surface temperature reduces the efficiency of solar panels by 0.5 per cent.

Companies are also looking to emerging technologies to help them hit carbon goals. In Singapore, concrete producer Pan-United and Keppel Data Centres are part of a consortium that is banking on carbon capture, use and storage technology that won’t be online for another five to 10 years to reduce the carbon impact of the city-state’s oil refining, petrochemicals and chemicals sectors.

Heavy-emitting sectors such as steel production, aviation and shipping have high hopes for hydrogen power, which is considered the missing piece of the renewables puzzle. But questions over cost and transportation make hydrogen a fuel for the future for now. “Moonshot ideas should be the last step,” says Bambawale.

 

Why net-zero is not just hot air

In Southeast Asia, where governments have shown little interest in decarbonising their economies in their post-pandemic recovery plans, there is less incentive for businesses to cut their carbon footprints amid the struggle to stay afloat.

But a wave of commitments to decarbonisation in the past 18 months will likely lead to more. Scores of businesses have signed up for science-based targets during the pandemic, which has played a part in pushing others towards net-zero, says Divgi, adding that a Southeast Asian bank recently committed to SBTi whose suppliers’ emissions were 400 times its own.

Another indicator of interest in corporate climate action is the Task Force on Climate-Related Financial Disclosures (TCFD), a global framework for companies to disclose the financial risks they face from climate change. CDP has seen a 20 per cent increase in TCFD disclosures in Asia over the last year, Divgi notes.

More companies are trying to assess the financial implications of the transition to a low-carbon economy, and the more progressive companies have recognised that calculating climate risk is not a reporting exercise, it’s a strategic one, says Divgi.

“We’re not saying that it [decarbonising] is without problems. There’s a huge level of transformation involved, but climate change presents both a financial and an existential challenge for many businesses,” she says.

“What is the cost of not decarbonising — that is the question that businesses should really be asking themselves.”

 


 

By Robin Hicks

Source Eco Business

More than 50 countries commit to protection of 30% of Earth’s land and oceans

More than 50 countries commit to protection of 30% of Earth’s land and oceans

A coalition of more than 50 countries has committed to protect almost a third of the planet by 2030 to halt the destruction of the natural world and slow extinctions of wildlife.

The High Ambition Coalition (HAC) for Nature and People, which includes the UK and countries from six continents, made the pledge to protect at least 30% of the planet’s land and oceans before the One Planet summit in Paris on Monday, hosted by the French president, Emmanuel Macron.

Scientists have said human activities are driving the sixth mass extinction of life on Earth, and agricultural production, mining and pollution are threatening the healthy functioning of life-sustaining ecosystems crucial to human civilisation.

In the announcement, the HAC said protecting at least 30% of the planet for nature by the end of the decade was crucial to preventing mass extinctions of plants and animals, and ensuring the natural production of clean air and water.

The commitment is likely to be the headline target of the “Paris agreement for nature” that will be negotiated at Cop15 in Kunming, China later this year. The HAC said it hoped early commitments from countries such as Colombia, Costa Rica, Nigeria, Pakistan, Japan and Canada would ensure it formed the basis of the UN agreement.

Elizabeth Maruma Mrema, the executive secretary of the UN Convention on Biological Diversity, welcomed the pledge but cautioned: “It is one thing to commit, but quite different to deliver. But when we have committed, we must deliver. And with concerted efforts, we can collectively deliver.”

The announcement at the One Planet summit, which also saw pledges to invest billions of pounds in the Great Green Wall in Africa and the launch of a new sustainable finance charter called the Terra Carta by Prince Charles, was met with scepticism from some campaigners. Greta Thunberg tweeted: “LIVE from #OnePlanetSummit in Paris: Bla bla nature Bla bla important Bla bla ambitious Bla bla green investments…”

As part of the HAC announcement, the UK environment minister Zac Goldsmith said: “We know there is no pathway to tackling climate change that does not involve a massive increase in our efforts to protect and restore nature. So as co-host of the next Climate Cop, the UK is absolutely committed to leading the global fight against biodiversity loss and we are proud to act as co-chair of the High Ambition Coalition.

“We have an enormous opportunity at this year’s biodiversity conference in China to forge an agreement to protect at least 30% of the world’s land and ocean by 2030. I am hopeful our joint ambition will curb the global decline of the natural environment, so vital to the survival of our planet.”

However, despite support for the target from several countries, many indigenous activists have said that increasing protected areas for nature could result in land grabs and human rights violations. The announcement may also concern some developing countries who are keen for ambitious commitments on finance and sustainable development as part of the Kunming agreement, not just conservation.

Unlike its climate equivalent, the UN Convention on Biological Diversity covers three issues: the sustainable use of nature, sharing benefits from genetic resources, and conservation. The three pillars of the treaty can clash with each other and richer, developed countries have been accused of focusing too much on conservation while ignoring difficult choices on agriculture and providing finance for poorer nations to meet targets.

The HAC, currently co-chaired by France, Costa Rica and the UK, was formed in 2019 following the success of a similar climate body that spurred ambitious international action before the Paris agreement. By promoting action on biodiversity loss, it is hoped early commitments from the HAC will ensure a successful agreement for nature.

Over the last decade, the world has failed to meet a single target to stem the destruction of wildlife and life-sustaining ecosystems.

On Monday, leaders from around the world met in person and virtually at the One Planet summit in Paris to discuss the biodiversity crisis, promoting agroecology and the relationship between human health and nature. Boris Johnson, Angela Merkel and Justin Trudeau addressed the event, which also included statements from UN secretary general, António Guterres, and the Chinese vice-premier Han Zheng .

The UK government has also committed £3bn of UK international climate finance to supporting nature and biodiversity over the next five years.

Johnson told the event: “We are destroying species and habitat at an absolutely unconscionable rate. Of all the mammals in the world, I think I am right in saying that 96% of mammals are now human being or livestock that human beings rely upon.

“That is, in my view, a disaster. That’s why the UK has pledged to protect 30% of our land surface and marine surface. Of the 11.6bn that we’ve consecrated to climate finance initiatives, we are putting £3bn to protecting nature.”

The funding was welcomed by conservation and environmental organisations, including the RSPB and Greenpeace, but there were questions about the scale of the funding and whether it came at the cost of international aid.

“Increasing funds to protect and enhance nature is critical to help secure success at the global biodiversity conference in China this year. Siphoning off cash from funds already committed to tackling the climate crisis simply isn’t enough,” said Greenpeace UK’s head of politics, Rebecca Newsom.

“This announcement raises concerns that the UK’s shrinking aid budget is being repurposed to pay for nature and biodiversity. As important as these are, the first priority of overseas aid should be the alleviation of poverty,” said Oxfam’s senior policy adviser on Climate Change, Tracy Carty.

  • This article was amended on 12 January 2020 to better reflect that the High Ambition Coalition (formed 2011) and the High Ambition Coalition for People and Nature (formed 2019) are separate organisations

 


 

By  and 

Source The Guardian

Successful carbon removal depends on these 3 conditions.

Successful carbon removal depends on these 3 conditions.

There is now more carbon dioxide in the atmosphere than at any time in the past 400,000 years, with carbon dioxide levels exceeding an unprecedented 400 parts per million.

The pace of carbon emissions has become such a problem that even if we can meet the carbon reduction targets set out in the 2016 Paris Agreement, global temperatures will likely rise above 1.5˚C by 2030 – which will increase the risks and impacts of droughts, floods, extreme heat, and poverty for hundreds of millions of people.

Fortunately, growing international pressure over the past decade has led to the development of solutions for tackling our carbon emissions problem. One category of these solutions is known as negative emission technologies (NETs), which focus on removing carbon dioxide from the atmosphere.

These carbon-removal solutions may be critical in our fight against climate change, but they need to meet certain conditions to effectively curb carbon emissions.

 

Ensuring long-term capture and storage of carbon removed

Professor Howard J. Herzog, Senior Research Engineer at the MIT Energy Initiative and leading expert on carbon capture and storage, says: “the best way to keep carbon dioxide out of the atmosphere is not putting it there in the first place”. There is truth in this when you consider how difficult it is recapturing and storing carbon dioxide for the long term, when it has already been emitted.

Nature provides the simplest carbon removal solution – planting more trees. This is an effective solution depending on how well the land is managed to protect from deforestation and natural disasters. If not protected, trees may only store carbon for hundreds of years, compared to the thousands of years needed to slow climate change.

Alternatively, technologists have found ways to burn biomass containing naturally recaptured carbon dioxide and use the energy released to pump the carbon dioxide underground for long-term storage. Known technically as Bioenergy with Carbon Capture and Storage (BECCS), this technology is promising but requires suitable rock formations such as basalt and forsterite to react with the carbon dioxide to avoid leakage.

Carbon Upcycling Technologies, an innovative startup founded by Apoorv Sinha, is combining carbon dioxide with fine particles such as fly ash, graphite, talc and olivine to produce solid nanoparticles that can be used for a range of material solutions. In 2017, Carbon Upcycling Technologies used its nanoparticles to create a corrosion-resistant coating, locking carbon away and generating revenues in the process.

 

Reducing carbon removal costs and meeting carbon storage capacities

The cost and storage capacity limits of removing carbon differ depending on the solution. Planting trees is arguably the cheapest and most natural way to remove carbon dioxide from the atmosphere, but its storage capacity is limited by the available land and impacted by deforestation.

Similarly to how solar power requires sunshine, carbon removal solutions also require certain conditions to work effectively. If certain conditions are not met, the full carbon capture capacity of these technologies cannot be realized.

2017 Michigan study optimistically suggests that carbon removal solutions have the potential to mitigate 37 gigatons of carbon dioxide per year, where annual emissions are roughly 38 gigatons of carbon dioxide per year. However, even if this were the case, reaching this storage potential would require a portfolio of solutions with carbon capture costs lower than traditional storage or emissions. Technological solutions are making progress – but investment and time are still required to reduce carbon removal costs and to scale-up the adoption of these solutions.

A Swiss-company, Climeworks, has constructed a plant which extracts carbon dioxide directly from the air using a filter and chemical process, storing carbon dioxide as a concentrate. Technologies like these are known as Direct Air Carbon Capture and Storage (DACCS). Despite the novelty of this idea, Climeworks’ plant in Italy can only capture up to 150 tons of carbon dioxide per year from the atmosphere, equivalent to taking just 32 cars off the road. Combined with high capital and carbon removal costs, solutions like these alone are not sufficient.

 

Reducing the market and technology risks of carbon removal solutions

Most carbon removal solutions are still in development, and it may take years for them to commercialize. The pathway to commercialization requires large investments into research and development without guarantees of financial return. This may not fit the risk profiles of many traditional investors or funders, limiting the available funds for the development of new solutions.

Cyclotron Road, an early-stage funder and incubator, provides grant and investment capital to innovative hard-tech social enterprises. Robert Ethier, a former investment director for Cyclotron Road, says this capital is “to help them reduce market and technology risk [and] accelerate them to commercialization [by] leveraging programmes and partners”.

At an early stage, risk-tolerant patient capital, invested into the right social entrepreneurs and provided with the right business and industry support, is critical to speed up the development of carbon removal solutions. This means that funders with higher risk tolerance – such as incubators, accelerators, philanthropists, international agencies, governments, academic institutions and angel investors – have a critical role to play a in providing the capital needed to commercialize carbon removal technologies.

 

So what?

There is a growing portfolio of carbon removal technologies, including those gifted by nature. Although in different stages of development, carbon removal solutions have the potential to serve as a necessary defense against pending climate catastrophe, but cannot serve as an insurance policy for the carbon dioxide we are emitting, and will emit.

Carbon removal technologies must be combined with other solutions and global efforts to reduce global carbon emissions. However, knowing that there are nascent solutions available should motivate the development, cost-reduction and scaling-up of these solutions. The future of the world depends on it.