Search for any green Service

Find green products from around the world in one place

Vortex Bladeless Turbine Wind Generator

Vortex Bladeless Turbine Wind Generator

How the Vortex Bladeless Turbine Works

The Vortex Bladeless Turbine is a pole-shaped structure that functions without rotating blades, but instead of rotating blades, it works off vibrations generated in the structure by vortices created when the wind passes around it. When the frequency of the vortices matches the resonance frequency of the structure, into which an alternator is integrated, the vibration energy can be transformed into electricity. In simpler terms, as the wind flows past the turbine, it creates a series of spinning whirlwinds, or vortices, that cause the rod-shaped turbine to vibrate. This vibration then converts the mechanical energy into electrical energy that can be used as a source of power.

One of the main differences between bladeless or motionless turbines and traditional wind turbines is that they can generate power at low wind speeds, which is significant because wind speeds in urban areas are typically lower than in rural areas. Traditional turbines require higher wind speeds, making them less effective in built-up areas.

Advantages of the Vortex Bladeless Turbine

One of the significant benefits of the Vortex Bladeless Turbine is that it’s more cost-effective than traditional turbines. It has fewer moving parts, which results in reduced manufacturing and maintenance costs. Also, it doesn’t require any oil or lubricants, making it a more environmentally friendly option.

The design of the Vortex Bladeless Turbine is more eco-friendly than traditional turbines because its pole-shaped structure does not pose any harm to birds and other animals that can come into contact with rotating blades. Furthermore, the device’s sleek design takes up less space than traditional wind turbines, making it adaptable to a wide range of environments.

Another benefit of the Vortex Bladeless Turbine is its flexibility. Its small size makes it the perfect choice for urban areas, where space is limited. They can be placed on the roofs of buildings or integrated into street furniture, providing an unobtrusive source of renewable energy. It can also be used to power individual homes or small communities that are off-grid, where running costs are a concern.

Applications of the Vortex Bladeless Turbine

One application of the Vortex Turbine is in urban environments. As mentioned earlier, these turbines can generate electricity at low wind speeds, making them a viable option for powering cities and towns. By placing them in strategic locations, they can capture the wind currents that flow through narrow streets, parks, and plazas.

Another application of the Vortex Bladeless Turbine is its potential to replace traditional turbines in remote locations. Traditional turbines are often used to provide power in areas where a connection to the electrical grid is not possible. However, their high manufacturing and maintenance costs make them less feasible in such instances. The Vortex Bladeless Turbine, being cost-effective and low maintenance, provides an alternative that can meet the power needs of those living in isolated areas.

The Vortex Bladeless Turbine is a revolutionary wind power generator that has the potential to transform the way we generate renewable energy. Its low manufacturing and maintenance costs, eco-friendly design, and flexibility make it an attractive option for powering urban areas and remote places alike. While there are some limitations, such as the amount of power generated compared to traditional turbines, and the need for further development to increase efficiency, the Vortex Bladeless Turbine is a step in the right direction towards a cleaner, more sustainable future. The device’s minimal environmental impact also makes it an excellent choice for environmentally conscious consumers and energy companies alike.

With renewable energy becoming more important in the fight against climate change, the development of innovative technologies like the Vortex Bladeless Turbine is crucial. As we continue to explore cleaner, more sustainable sources of energy, devices like these will become increasingly critical. And while there are still challenges to overcome and further research to be done, the potential benefits of the Vortex Bladeless Turbine make it a promising addition to our renewable energy toolkit.

Overall, the Vortex Bladeless Turbine is a fascinating innovation that could play a significant role in the future of wind power generation. Its eco-friendly design, low cost, and flexibility make it an exciting alternative to traditional wind turbines. It’s clear that as we move towards a more sustainable future, technologies like this will continue to be developed, offering us new and exciting ways to generate renewable energy and help protect our planet.

 

 


 

 

Source Happy Eco News 

 

Climate change: Wind and solar reach milestone as demand surges

Climate change: Wind and solar reach milestone as demand surges

Wind and solar generated 10% of global electricity for the first time in 2021, a new analysis shows.

Fifty countries get more than a tenth of their power from wind and solar sources, according to research from Ember, a climate and energy think tank.

As the world’s economies rebounded from the Covid-19 pandemic in 2021, demand for energy soared.

Demand for electricity grew at a record pace. This saw a surge in coal power, rising at the fastest rate since 1985.

The research shows the growth in the need for electricity last year was the equivalent of adding a new India to the world’s grid.

Wind turbine blades being made ready for export from China

 

Solar and wind and other clean sources generated 38% of the world’s electricity in 2021. For the first time wind turbines and solar panels generated 10% of the total.

The share coming from wind and sun has doubled since 2015, when the Paris climate agreement was signed.

The fastest switching to wind and solar took place in the Netherlands, Australia, and Vietnam. All three have moved a tenth of their electricity demand from fossil fuels to green sources in the last two years.

“The Netherlands is a great example of a more northern latitude country proving that it’s not just where the Sun shines, it’s also about having the right policy environment that makes the big difference in whether solar takes off,” said Hannah Broadbent from Ember.

Vietnam also saw spectacular growth, particularly in solar which rose by over 300% in just one year.

“In the case of Vietnam, there was a massive step up in solar generation and it was driven by feed-in tariffs – money the government pays you for generating electricity – which made it very attractive for households and for utilities to be deploying large amounts of solar,” said Dave Jones, Ember’s global lead.

“What we saw with that was a massive step up in solar generation last year, which didn’t just meet increased electricity demand, but it also led to a fall in both coal and gas generation.”

Despite the growth and the fact that some countries like Denmark now get more than 50% of their electricity from wind and solar, coal power also saw a remarkable rise in 2021.

 

Coal saw a resurgence in 2021 as the price of other energy sources rose rapidly

 

A large majority of the increased demand for electricity in 2021 was met by fossil fuels with coal fired electricity rising by 9%, the fastest rate since 1985.

Much of the rise in coal use was in Asian countries including China and India – but the increase in coal was not matched by gas use which increased globally by only 1%, indicating that rising prices for gas have made coal a more viable source of electricity.

“The last year has seen some really super high gas prices, where coal became cheaper than gas,” said Dave Jones.

“What we’re seeing right now is gas prices across Europe and across much of Asia being 10 times more expensive than they were this time last year, where coal is three times more expensive.

He called the price rises for both gas and coal: “a double reason for electricity systems to demand more clean electricity, because the economics have shifted so fundamentally.”

The researchers say that despite the coal resurgence in 2021, major economies including the US, UK, Germany, and Canada are aiming to shift their grids to 100% carbon free electricity within the next 15 years.

This switch is being driven by concerns over keeping the rise in the world’s temperature under 1.5C this century.

To do that, scientists say that wind and solar need to grow at around 20% every year up to 2030.

The authors of this latest analysis say this is now “eminently possible”.

The war in Ukraine could also give a push to electricity sources that don’t depend on Russian imports of oil and gas.

“Wind and solar have arrived, and they offer a solution out of the multiple crises that the world is facing, whether it’s a climate crisis, or the dependence on fossil fuels, this could be a real turning point,” said Hannah Broadbent.

Ember’s Global Electricity Review can be found here.

 


 

Source BBC

UK leads G20 for share of electricity sourced from wind

UK leads G20 for share of electricity sourced from wind

Nearly a quarter of the UK’s electricity came from wind turbines in 2020 – making the country the leader among the G20 for share of power sourced from the renewable energy, a new analysis finds.

The UK also moved away from coal power at a faster rate than any other G20 country from 2015 to 2020, according to the results.

And it ranked second in the G20, behind Germany, for the proportion of electricity sourced from both wind and solar in 2020.

However, Britain is still lagging behind when it comes to fossil gas, according to analysis by the climate and energy think tank Ember.

The country sourced 37 per cent of its electricity from fossil gas in 2020, placing it ninth in the G20 and above the global average of 23 per cent.

 

“It’s crazy how much wind has grown in the UK and how much it has offset coal, and how it’s starting to eat at gas,” Dave Jones, Ember’s global lead analyst, told The Independent.

But it is important to bear in mind that “we’re only doing a great job by the standards of the rest of the world”, he added.

 

UK is second behind Germany in G20 for share of electricity sourced from wind and solar (Ember)

 

Ember’s Global Electricity Review notes that the world’s power sector emissions were two per cent higher in 2020 than in 2015 – the year that countries agreed to slash their greenhouse gas pollution as part of the Paris Agreement.

Power generated from coal fell by a record amount from 2019 to 2020, the analysis finds. However, this decline was greatly facilitated by lockdowns introduced to stop the spread of Covid-19, which stifled electricity demand, the analysts say.

Coal is the most polluting of the fossil fuels. The UK government hopes to convince all countries to stop building new coal-fired power stations at Cop26, a climate conference that is to be held in Glasgow later this year.

UN chief Antonio Guterres has also called for all countries to end their “deadly addiction to coal”.

At a summit held earlier this month, he described ending the use of coal in electricity generation as the “single most important step” to meeting the Paris Agreement’s goal of limiting global warming to well below 2C above pre-industrial levels by 2100.

“There is definitely a concern that, in the pandemic year of 2020, coal hasn’t fallen as fast as it needed to,” said Mr Jones.

“There is concern that, once electricity demand returns, we won’t be seeing that decline in coal anymore.”

 


 

By Daisy Dunne Climate Correspondent

Source Independent

Testing, testing: how responding to climate change will make our world quieter

Testing, testing: how responding to climate change will make our world quieter

Our hearing organs start to develop at two or three weeks of gestation, and as we continue to develop in the womb we can hear well enough to react to sound. Sight may well be listed second in influential academic Marshall McLuhan’s ordering of the human senses into a hierarchy of importance yet traditionally, industrial design has focused on sight and touch, especially for expensive items. But, as we learn more about the design of infrastructure required for a net-zero emissions future, audio is becoming increasingly important in how we design, and for whom.

A more sustainable future means that our world will likely become quieter as energy-efficient technology has the potential to reduce noise impacts.

In most machines or systems, noise reflects a loss of energy in the system – energy being wasted rather than put to productive use. As we focus on reducing emissions and increasing energy efficiency, there is potential to achieve a quieter environment.

Creating power with solar panels or hydrogen instead of boilers and steam turbines; powering vehicles with batteries or hydrogen fuel cells rather than gasoline or diesel engines; electrifying rail lines to take diesel-electric locomotives out of service, and developing high-efficiency electric motors to make commercial processes (from air conditioning to manufacturing) whisper-quiet.

What are the ramifications of a quieter world as communities transition to net zero emissions, and how does that impact design? Could the noisiness of your factory floor or your suburb become a measure of how sustainable you are as a business or a community?

 

Do we need more or less noise?

This question is in the eyes (or ears) of the beholder. Rachel Carson’s seminal text ‘Silent Spring’, responsible for kicking off the modern environmental movement, argues that a healthy natural environment should be ‘noisy’ with natural life.

However, COVID-19 has revealed a mixed reaction to the relative silence that so many people experience from working remotely. For some, prolonged silence and isolation made them desperate for interaction with others; some introverts thrived in lockdown and never want to return to an office; others craved solitude after the noise of home-schooling kids, while trying to work.

Anecdotally, people are seeking out silence, as evidenced by the trend of city folks moving to regional centres. There is also the increasing use of noise-cancelling headphones, allowing people to curate their own audio environment, regardless of what sounds are actually around them.

The influence of increased or decreased noise on creativity, mental health and reflectiveness is probably down to the individual, although there are questions to be asked as we design this new audio world. Sound-masking systems conceal noise in new offices, but what if these became more common? Would organisations lose creativity if eavesdropping was lost? Research shows eavesdropping actually makes us better people. Could plugged-in employees result in decreased stress at the expense of less creativity and social engagement?

Hearing is a primal threat detector for humans and design has compensated for quieter noise in the past: for instance, the first cars were preceded by a person ringing a bell as a warning. Silence can be a problem, which is why electric trams and cable cars traditionally ring a bell to alert pedestrians to their approach, and why pushbikes have a bell on their handlebars.

Now, electric vehicle makers have synthetic sounds generated from their quiet motors – to make pedestrians aware that cars are around. While this has already become a legal requirement in the EU, other automakers are looking for workarounds: for example, Ford reportedly wants to include an ‘off switch’ for its line-up of police vehicles, presumably so officials can sneak up on suspected criminals.

 

How audio design can improve sustainable outcomes

Audio design in infrastructure could become a way to solve problems or achieve better sustainability outcomes. Look at start-up Ping Services, the creators of a stethoscope for monitoring the ‘health’ of wind turbines. Acoustic technology ‘listens’ to turbine blades to monitor their condition and helps predict degradation without early retirement, a common issue afflicting wind turbines.

The idea of creating an ‘acoustic fingerprint’ of well-maintained operating equipment, as a measure of equipment performance, has multiple applications across many industries such as mining and manufacturing. Ping, a small Adelaide start-up, is reaping the benefits of being an innovative first mover in using noise, or absence of it, as a measure of efficiency.

This movement towards less noise could change our property and settlement patterns, reducing urban sprawl. For instance, real estate next to busy roads may not necessarily lose value in a future of predominantly electric vehicles, because the reduced noise and reduced particulate emissions (no engines, less brake wear) will alleviate the impact on an amenity that a busy roadway would normally have.

A school in the Netherlands has placed acoustics at the heart of design under the premise that less noise equals less stress, illness and lower absentee rates. More than 30 000 m² of stone wool tiles and a long wall of reindeer moss supports the ceiling in creating a comfortable acoustical environment. Acoustic panels themselves are becoming more sustainable with options now made from chemical-free pulp.

The opportunities a net-zero future brings for design are endless. As roadways become narrower due to automated, quieter and non-emitting vehicles, the physical environment can be integrated further into design. Increased vegetation has the power to muffle harsh noise and absorb carbon dioxide. Just as rooftop gardens and flower walls are now commonplace, the best of Mother Nature’s audio like the calming benefits of birdsong could be incorporated on a broader scale.

 

Designing for silence

An electrified economy could potentially see increased audio pollution restrictions (for example, construction site noise limits, airport curfews) to reduce intrusions on people’s audio space. In the same way that smog and pollution were controlled in response to the industrial revolution’s excesses, the transition to a net-zero economy could include further control of public sound.

New regulations around use of drones already protect local wildlife, and sound laws have been enacted by governments and councils to account for technology that causes ambient public noise to recede from electrification and high-efficiency motors.

Not all of these will be reactions against sound: already, pleasant background sounds are actively introduced in places where people need to be calm, such as medical settings, or synthetic engine noise is simulated in electric vehicles to create a sportier sound upon acceleration.

Incorporating the design of sound into the built environment from the beginning is the best way to achieve a quieter environment, and avoids subjective tastes dictated by a few for the group. Already there are moves to design quiet spaces while, at the same time, we are warned of the psychological dangers of silence. Between the two extremes is a design challenge for perhaps audio-neutrality – more likely to be attained if we start with human need.

Decarbonising economies to combat climate change is a complex journey and won’t happen overnight, and neither will our response to lowering noise levels. Instead of the future soundscape being managed as an afterthought, more value could be obtained if we consider it early in the design phase, especially of workplaces and educational institutions, as a driver of qualitative measures such as engagement, fulfilment and purpose.

Sound is important to us. It is not only one of the first senses to develop, but it is also widely-believed to be the last sense people retain before they lose consciousness forever. While COVID-19 has provided an unexpected context in which to consider the audio environment we want to live, work and play in, climate change is providing ongoing opportunities to return to the sounds of nature.

You’ll have to keep listening to find out what a net-zero emissions future sounds like. Perhaps it might not only be smelling the roses, but also hearing the birds chirp. Wouldn’t that be a wonderful world!

Aurecon’s award-winning blog, Just Imagine provides a glimpse into the future for curious readers, exploring ideas that are probable, possible and for the imagination. This post originally appeared on Aurecon’s Just Imagine blog. Get access to the latest blog posts as soon as they are published by subscribing to the blog.

 


 

Source Eco News AU

The global race to produce hydrogen offshore

The global race to produce hydrogen offshore

Last year was a record breaker for the UK’s wind power industry.

Wind generation reached its highest ever level, at 17.2GW on 18 December, while wind power achieved its biggest share of UK energy production, at 60% on 26 August.

Yet occasionally the huge offshore wind farms pump out far more electricity than the country needs – such as during the first Covid-19 lockdown last spring when demand for electricity sagged.

But what if you could use that excess power for something else?

“What we’re aiming to do is generate hydrogen directly from offshore wind,” says Stephen Matthews, Hydrogen Lead at sustainability consultancy ERM.

His firm’s project, Dolphyn, aims to fit floating wind turbines with desalination equipment to remove salt from seawater, and electrolysers to split the resulting freshwater into oxygen and the sought-after hydrogen.

 

 

The idea of using excess wind energy to make hydrogen has sparked great interest, not least because governments are looking to move towards greener energy systems within the next 30 years, under the terms of the Paris climate agreement.

Hydrogen is predicted to be an important component in these systems and may be used in vehicles or in power plants. But for that to happen, production of the gas, which produces zero greenhouse gas emissions when burned, will need to dramatically increase in the coming decades.

Mr Matthews says his firm’s project is just getting going, with a prototype system using a floating wind turbine of roughly 10 megawatt capacity planned, but not yet built.

It’s possible that the system could be based in Scotland and the aim is to start producing hydrogen around 2024 or 2025.

But there are many other ventures in this area besides Dolphyn.

Wind turbine maker Siemens Gamesa and energy firm Siemens Energy are ploughing 120m euros ($145m; £105m) into the development of an offshore turbine with a built-in electrolyser.

German energy company Tractebel is exploring the possibility of building a large-scale, offshore hydrogen production plant powered by nearby wind turbines; and UK-headquartered Neptune Energy is seeking to convert an oil platform into a hydrogen production station, which will pump hydrogen ashore to the Netherlands via pipes that are currently transporting natural gas.

 

There are plans to convert this old North Sea oil platform into a hydrogen production plant NEPTUNE ENERGY

 

All of the excitement around hybrid wind energy and hydrogen generation systems is partly down to climate commitments but economics are also involved.

Large-scale hydrogen electrolysers are becoming more available while the costs of installing wind turbines has fallen “dramatically”, says James Carton, assistant professor in sustainable energy at Dublin City University.

He and others think the time is right to kick-start large-scale hydrogen electrolysis at sea, though the idea has been around for many years.

 

Electrolyser stacks break seawater down into hydrogen and oxygen ITM POWER

 

Oyster is yet another project in this area, and involves a consortium of companies including Danish energy firm Ørsted and British electrolyser specialists ITM Power, among others.

In the first instance, a wind turbine will power an onshore electrolyser that will churn out hydrogen. The device will be exposed to sea spray to simulate, to a degree, the harsh environment facing offshore equipment. ITM intends to design a system compact enough to fit into a single wind turbine.

The firm’s chief executive, Graham Cooley, points out that it is much easier to store molecules such as hydrogen than electrons in batteries.

“All the renewable energy companies… they’ve realised they’ve got a new product,” he adds. “Now they can supply renewable molecules to the gas grid and industry.”

The Oyster consortium hopes to have shown off a demonstrator of its system within 18 months.

 

ITM plan to build a hydrogen-producing unit that can fit into a wind turbine ITM POWER

 

Among the many potential uses for hydrogen is as a fuel for gas-burning boilers in homes. Converting the domestic gas grid to provide hydrogen, and fitting homes with boilers capable of burning it, would be a huge task.

However, it would mean that excess wind energy could in principle be used to supply this giant system, meaning very little of that energy would go to waste, says Mr Carton, referring to the gas main pipes scattered around the UK and Ireland: “We have a big tank, it’s just a really long tank in the ground.”

For some, this is all very exciting. But there are hurdles yet to overcome. A spokesman for the wind energy industry body WindEurope says that while renewable hydrogen produced via wind-powered electrolysis is “future-proof”, a decade or so of technological development is required before these systems will have a larger impact.

Jon Gluyas, Ørsted/Ikon chair in geoenergy, carbon capture and storage at Durham University, adds that the real question is whether it is cost-effective to set up such equipment at scale. Proponents, unsurprisingly, argue it is – but with energy systems the proof is only ever in the pudding. Ultimately, Prof Gluyas says a mix of different technologies and approaches will be needed for countries like the UK to be carbon neutral.

For Mr Carton, the vision remains tantalising. Schemes that solve the problem of wind’s variability by using excess power to good use could be transformative, he argues: “It’ll change the way we look at renewables.”

 


 

By Chris Baraniuk
Technology of Business reporter

Source BBC