Search for any green Service

Find green products from around the world in one place

Sustainable Cooling: Electrocaloric Cooling Breakthrough

Sustainable Cooling: Electrocaloric Cooling Breakthrough

As heatwaves intensify across the globe, the demand for air conditioning and refrigeration skyrockets. The ballooning demand for cooling strains energy infrastructure and escalates emissions from vapor compression systems. These conventional refrigerators and AC units rely on greenhouse gases and inefficient mechanical compressors that have reached their efficiency limits. With little room for improvement, vapor compression technology cannot sustainably shoulder doubling cooling demands. Scientists urgently search for climate-friendly innovations before the warming world overheats.

In a breakthrough discovery, researchers at the Luxembourg Institute of Science and Technology (LIST) pioneer a radically different cooling approach harnessing the electrocaloric cooling effect. This phenomenon describes particular ceramic materials that heat up or cool down when electric fields flip on and off. By cleverly leveraging this conductivity toggle, the LIST team designed an assembly that can pump heat without noisy, energy-draining compressors.

Electrocaloric cooling is a fascinating phenomenon where certain materials experience a reversible temperature change when an electric field is applied. In simpler terms, you can directly use electricity to manipulate their temperature, creating a cooling effect. This opens up exciting possibilities for energy-efficient and environmentally friendly cooling technologies.

The regenerative system developed by LIST alternates layers of electrocaloric capacitors with liquid coolant. Switching an electric field pulls heat from the fluid into the capacitors, cooling the system. Cutting voltage then dissipates the heat, so the cycle repeats. The smooth back-and-forth between hot and cold replaces high-maintenance mechanical parts with solid-state reliability. Scientists calculate that electrocaloric cooling efficiency leapfrogs vapor compression refrigeration by directly shuffling heat instead of wasting effort compressing refrigerants.

Since fluids naturally stratify by temperature, no added energy input is required to cycle hot and cold. The passive electrocaloric cooling generator minimizes electricity demands by exploiting thermodynamics rather than fighting against them. With game-changing energy savings over traditional refrigerator designs, this electrocaloric cooling technology paves the way for truly sustainable cooling.

Seeking real-world integration, LIST researchers collaborate with manufacturing partners to develop prototypes. The original discovery featured a single electrocaloric part, which limited heat transfer speed. The current regenerator assembly overcame this by interleaving many capacitors with parallel coolant channels. This boosts heat pumping capacity for powerful, real-world performance. Ongoing enhancements also aim to lower costs and extend operating lifetimes to enable widespread commercialization.

While the immediate goal focuses on eco-friendly refrigeration, the applications likely won’t stop there. Any process generating unwanted heat could benefit from electrocaloric cooling technology. Air conditioners, electronics cooling, industrial processes and even solar energy storage represent prospective opportunities. Because electrocaloric cooling systems thrive when miniaturized, microchip-level cooling also offers possibilities for computing breakthroughs.

For example, electrocaloric cooling films could provide on-chip cooling for high-performance computer processors, enabling faster computing speeds. Electrocaloric cooling systems can also be used to condense water vapor in air conditioning and dehumidification applications. This could allow environmentally-friendly refrigerants like water instead of HFCs to be used in vapor compression HVAC.

Additionally, the flexibility of electric-powered cooling lends well to renewable energy integration and smart grid load balancing. Electrocaloric heat pumps powered by wind or solar electricity during times of excess generation could store thermal energy for later dispatch while synchronizing supply and demand on the grid. With materials and system configuration innovations, electrocaloric cooling technologies show promise for revolutionizing thermal management across many sectors.

Despite enormous promise, unanswered questions remain regarding large-scale manufacturing and durability. However, early indications suggest the regenerator’s simple solid-state design will prove reliable over long stretches. By dodging complex mechanical components, the approach naturally steers towards sustainability. Cooling demand will only climb higher as climate change continues, but creative solutions like the LIST electrocaloric cooling regenerator offer hope we can innovate our way to a cooler future.

 

 


 

 

Source  Happy Eco News 

The Five Best Ways for Free Home Cooling with No AC

The Five Best Ways for Free Home Cooling with No AC

It’s hot these days. Here are the five common sense ways for home cooling with no AC.

  1. Close your curtains and blinds during the day. This will help to keep the sun’s heat out of your home. If you don’t have curtains or blinds, you can use sheets or towels to cover your windows. Close your curtains and blinds during the day.
  2. Run ceiling fans. Ceiling fans can help to circulate the air in your home, which can help to keep you cool. If you have a ceiling fan, ensure it is set to blow down.
  3. Use fans to create a cross breeze. If you have windows on opposite sides of your home, you can open them to create a cross breeze. This will help to draw the cooler air in from outside and push the hot air out.
  4. Take cool showers or baths. Taking a cool shower or bath can help to lower your body temperature. You can also use a wet towel to cool down your neck and forehead.
  5. Cook outside and unplug devices. Cooking outside on a barbeque, camp stove, RV, or other appliance outside will help keep your house cooler. The heat generated by an oven or a stove can quickly counteract any other efforts you made throughout the day.

Here are some additional tips to keep your home cool without air conditioning:

  • Ventilate your home at night. If it’s cooler outside than it is inside, open your windows at night to let in the cool air and begin the next day with a nice cool house.
  • Plant trees around your home. Trees can help to shade your home and keep it cooler in the summer.
  • Use reflective insulation. Reflective insulation can help to reflect the sun’s heat away from your home.
  • Seal up any air leaks. Air leaks can let in hot air, so sealing them up is important.

By following these tips, you can keep your home cool without air conditioning and save money on your energy bills.

 

 


 

 

Source  Happy Eco News

Could this colourful plant-based film replace the need for air conditioning?

Could this colourful plant-based film replace the need for air conditioning?

Scientists at Cambridge University in the UK are working on an eco-friendly alternative. Their invention consists of a plant-based film that stays cool when exposed to sunlight.

The material could someday be used to keep buildings and cars cool without the need for external power. Coming in a range of textures and bright iridescent colours, it’s aesthetically pleasing too.

How does the eco-friendly cooling film work?

For a material to stay cooler than the air around it during the daytime, there are two critical requirements. It must have high solar reflectance to reflect the warmth of the sun and not heat the air around it. It must also have a high emissivity in infrared bands to emit heat into outer space efficiently.

Only a few materials have these properties and scientists are already developing them into paints and films capable of what is known as ‘passive daytime radiative cooling’ (PDRC).

When applied to the surface of a car or building, it means that these materials create a cooling effect without consuming electricity or creating pollution.

How can PDRC materials be made more attractive?

Since they need to be solar reflective, PDRC materials are usually white or silver.

Adding colour would decrease their cooling performance. This is because coloured pigments selectively absorb specific wavelengths of light, only reflecting the colours we see. This extra light absorption creates a warming effect.

“These limited colours hinder the applications where visual appearance is a key consideration, such as for architecture, cars and clothes,” says project member, Dr Qingchen Shen.

To increase the desirability of these materials, colour is an important factor.

Along with the project’s lead investigator, Dr Silvia Vignolini, Dr Shen set out to research ways of achieving colour without the use of pigments.

They looked to structural colouration as a solution. This is where shapes and patterns reflect specific colours of light without the presence of pigmentation, as seen on soap bubbles and oil slicks.

Seeking a natural source of this phenomenon, the research team used cellulose nanocrystals (CNCs) – derived from the cellulose found in plants – to create iridescent, colourful films without any added pigment.

“We specifically use cellulose-based materials for our films because cellulose is the most abundant polymer in nature,” says Dr Shen.

It is also one of the few natural materials capable of promoting PDRC.

After experimenting with basic colours, the researchers are now working on glittery CNC-ethyl cellulose films. They are also developing different textures that could blend in with various wood finishes.

How effective is the colourful cooling film?

The researchers created layered cellulose films in vibrant blue, green and red colours and put them to the test.

When placed under sunlight, they were an average of nearly 4°C cooler than the surrounding air.

One square metre of the film generated over 120 watts of cooling power, rivalling many types of residential air conditioners.

As a general guideline, bedrooms require around 80 watts per square metre and living spaces 125 watts of air conditioning capacity.

The researchers hope to find new ways to leverage CNC-ethyl cellulose films. These include adding sensors to detect environmental pollutants or weather changes.

Ultimately, they hope the film coating could serve several purposes at once. It could be used to both cool buildings and to alert to changing levels of pollutants in congested areas, for example.

 

 


 

 

Source Euronews Green

Air Conditioning in a Camping Tent – Just Add Water

Air Conditioning in a Camping Tent – Just Add Water

The fabrics currently used to make tents are engineered to block out winds and water to help keep their inhabitants dry and comfortable, but they tend to work both ways, preventing hot air from escaping from the tent. The tent can feel sweltering, even with plenty of ventilation.

You can always pack a portable air conditioner to drop the temperature inside your tent, but those require an ingredient that is often in short supply at rural campsites: electricity. Running a portable AC unit or even a simple fan on a solar panel for an extended period is impossible, and you do not want to carry batteries in your backpack.

Al Kasani, a researcher at the University of Connecticut’s Center For Clean Energy Engineering, drew inspiration from the way plants wick water from the ground and then sweat to cool themselves. Subsequently, he designed a self-cooling tent fabric that retains its thin and lightweight nature; with an added twist – it is fortified with titanium nanoparticles that absorb moisture from reservoirs at the base of the tent. This releases water across its surface, rapidly evaporating, resulting in a cooling effect that reduces internal temperature by up to 20 degrees.

Using either water sourced from a faucet at a campsite or water drawn from a stream in a rural setting, Kasani estimates that a gallon of water can keep a tent cool for up to 24 hours. You don’t need purified, clean water, evaporative cooling works with any water.

This upgraded fabric won’t be available in camping gear for a while—the material is still in the research phase—but according to the university, “industry interest has been high in Kasani’s technology.”

It will be interesting to see this type of product enter the mainstream. Any success with a passive cooling system like this will have spinoffs that can help in other ways. Suppose you can cool a camping tent by 20 degrees. In that case, you could also provide cooling shelters to protect vulnerable people living on the streets without access to air conditioning. A similar protection could be created for refugees or hospitals in hotter regions. Advances in technology might even find a way to use it to cool traditional buildings and reduce energy costs in warehouses. The potential is almost endless.

 

 


 

 

Source Happy Eco News

A cool new energy-efficiency policy

A cool new energy-efficiency policy

A single change in our approach to energy efficiency can enable more people around the world to stay cool, benefit consumers, and flatten the curve on cooling-related energy demand and emissions.

Air conditioning (AC) may be cooling us, but it’s cooking our planet.

Countries around the world have experienced scorching temperatures this summer. This August was the second hottest on record. Global warming and more intense summer heat waves, coupled with increased urbanisation and rising incomes, are driving a dramatic increase in demand for AC units.

The International Energy Agency (IEA) predicts that the number of ACs in operation globally will increase from 1.6 billion today to 5.6 billion by 2050. Over the next 30 years, ten air conditioners will be sold every second.

Air conditioners contribute significantly to the greenhouse-gas emissions fueling climate change, both directly, owing to the hydrofluorocarbon (HFC)-based refrigerants they contain, and indirectly, given the energy they consume.

 

Over the next 30 years, ten air conditioners will be sold every second.

 

recent report by the IEA and the United Nations Environment Program is the latest to highlight the threat, describing it as “one of the most critical and often neglected climate and development issues of our time.”

The 2016 Kigali Amendment to the Montreal Protocol on Substances that Destroy the Ozone Layer aims to reduce HFC production and consumption by over 80 per cent by 2047. If implemented, this could avoid 0.4°C of global warming this century. But while the Kigali Amendment provides a pathway to address refrigerants, the world must now tackle the problem of air conditioners’ energy intensity.

Most AC units sold today are 2-3 times less efficient than the best commercially available products. This is largely because consumers buy the lowest-priced units, with little or no understanding of the lifecycle cost implications of their purchase. The IEA estimates that widely diffusing the most efficient air conditioners on the market today could cut cooling energy demand by half.

While the AC industry needs to continue making units more efficient, we can, and must, take steps to drive the adoption of the best products already available. That means flipping the way we address the efficiency issue, which in turn will require policymakers and the industry to come together and show bold leadership.

One way to boost energy efficiency is through policy intervention, specifically regarding minimum energy-performance standards (MEPS). Currently, MEPS are set just above the level of the worst-performing AC products, in order to keep them out of the market and provide some protection to consumers.

But with market growth continuing to accelerate, policymakers should instead set MEPS with reference to the best commercially available products – meaning that the MEPS would be just below the technology ceiling, rather than just above the technology floor.

This significant change would not only protect consumers; it would also considerably reduce the lifecycle costs of owning and operating air conditioners. At the same time, it would still allow sufficient space for product competition, thereby bringing down the purchase price of more efficient units.

Such a policy could emulate and build on Japan’s Top Runner program, launched in 1999, which effectively advances the country’s AC market while delivering energy savings and reducing lifecycle costs. The scheme encourages consumers to purchase the best-performing available units through a labeling program, which in turn increases economies of scale and lowers costs. And by demanding more efficient AC technologies from the market, Top Runner also bolsters investor confidence.

Targeting maximum efficiency in this way worldwide would decrease the lifecycle cost for consumers of owning an AC unit by a factor of two to three and eliminate the need for over 1,300 gigawatts of electricity generation capacity globally. It would also avoid 157-345 gigatons of carbon dioxide emissions over the next four decades.

Establishing policies based upon the best commercially available AC products rather than the most commonly sold ones would thus avoid emissions, reduce government spending on power generation, and save consumers money, all while continuing to incentivise the market to develop better performing products.

Better yet, such a policy shift would prepare the market for AC products with even greater efficiency potential that are already on the horizon. In 2018, an international coalition launched the Global Cooling Prize to identify a residential room air conditioner that uses dramatically less energy and contains refrigerants with little to no effect on the climate.

Eight teams have developed technologies that potentially could have five times less climate impact than standard AC units on the market today. Following testing this fall, one winner will be awarded a prize of $1 million in March 2021 for their innovative cooling solution.

Scaling such a cooling technology globally could save consumers $1 trillion in operational costs in the next 30 years, and avoid up to 0.5°C of warming by the end of the century. And that includes only the residential sector.

A single change in our approach to energy efficiency can enable more people around the world to stay cool, benefit consumers, and flatten the curve on cooling-related energy demand and emissions. If we want climate-friendly AC, we need to leap toward the technology ceiling.

Iain Campbell is a senior fellow at the Rocky Mountain Institute. Caroline Winslow is an associate with the Buildings Team at the Rocky Mountain Institute.

 


 

By Iain Campbell and Caroline Winslow

Source: Eco-Business