Search for any green Service

Find green products from around the world in one place

Fighting food waste: New system uses wireless signals in the sub-terahertz band to determine fruit ripeness

Fighting food waste: New system uses wireless signals in the sub-terahertz band to determine fruit ripeness

One bad apple may not spoil the whole bunch, but when it comes to distributing food, a lot of good goes out with the bad.

Now, researchers from Princeton University and Microsoft Research have developed a fast and accurate way to determine fruit quality, piece by piece, using high-frequency wireless technology. The new tool gives suppliers a way to sort fruit based on fine-grained ripeness measurements. It promises to help cut food waste by optimizing distribution: good fruit picked from bad bunches, ripe fruit moved to the front of the line.

Current methods to determine ripeness are either unreliable, overly broad, too time-consuming or too expensive to implement at large scales, according to the new study, presented Oct. 3 at the 2023 ACM MobiCom conference on networking and mobile computing.

“There is no systematic way of determining the ripeness status of fruits and vegetables,” said Yasaman Ghasempour, assistant professor of electrical and computer engineering at Princeton and one of the study’s principal investigators. “It is mostly random visual inspection, where you check one fruit out of the box on distribution lines and estimate its quality through physical contact or color change.”

But this kind of visual inspection leads to poor estimates much of the time, she said. Rather than rely on how the peel looks or how it feels to the touch, advanced wireless signals can effectively peek under the surface of a piece of fruit and reveal richer information about its quality.

Roughly one-third of all food produced in the United States gets tossed each year, according to the Environmental Protection Agency. Worldwide, the United Nations has estimated that half of all fruits and vegetables go to waste. The new study’s authors say inefficiency at this scale is only seen in the food industry, and that automated, noninvasive and scalable technologies can play a role in reducing all that waste.

“When we look at the global challenges around food security, nutrition and environmental sustainability, the issue of food waste plays a major role,” said Ranveer Chandra, the Managing Director of Research for Industry and CTO of Agri-Food at Microsoft. He said the amount of food wasted each year could feed more than a billion people. And that food waste accounts for nearly 6% of the world’s greenhouse gas emissions. “If we could reduce food waste, it would help feed the population, reduce malnutrition, and help mitigate the impact of climate change,” Chandra said.

The team, led by Ghasempour and Chandra, developed a system for determining ripeness using wireless signals in the sub-terahertz band that can scan fruit on a conveyor belt. The sub-terahertz signals—between microwave and infrared—interact with the fruit in ways that can be measured in fine detail, leading to readouts of sugar and dry matter content beneath the surface of the fruit’s skin.

Next-generation wireless systems, like the coming 6G standards, will be designed to accommodate new high-frequency bands such as terahertz and sub-terahertz signals, the researchers said. But while these bands have begun to spark new communication technologies, the Princeton-Microsoft technique is one of the first to leverage these signals for sensing, particularly for smart food sensing.

As fruit continues to ripen after harvest, its physical, chemical and electrical properties also change. Bananas yellow. Grapes wrinkle. Avocados darken. But for a lot of fruit, it is hard to know how those outward markers correlate to actual ripeness or quality. Anyone who has bitten into a perfectly shiny red apple only to find it mealy and dry understands this disparity.

When a sub-terahertz pulse impinges on a piece of fruit, its rays go more than skin deep. Some frequencies get absorbed, others get reflected, and a lot of frequencies do a little of both with varying intensity. The reflection creates its own signal across a range of frequencies, and that signal has a detailed and specific shape—a signature. By modeling the physics of these interactions and procuring a lot of data, the researchers were able to use that signature to reveal the fruit’s ripeness status.

“It was really challenging to develop a model for this,” Ghasempour said. She said fruits’ many structural layers—seeds, pulp, skin—added complexity to the problem, as well as variations in size, thickness, orientation and texture. “So, we performed some wave modeling and simulations, and then augmented those insights with the data that we collected.”

In the experiment, they used persimmons, avocados and apples. Fruits with smooth skins are easiest to measure. The bumpiness of, say, an avocado reflects a weaker signal and produces unwanted effects. But the researchers found ways to get around the bumpiness problem and say that with enough data the method can be applied to most fruits.

They believe this tool can be extended to other kinds of foods, too—including meats and beverages—by using different kinds of physiological markers. Those extended use cases could have big implications for food safety monitoring and consumer choice.

 

 


 

 

Source  Tech Xplore

Generating small amounts of electricity by squeezing luffa sponges

Generating small amounts of electricity by squeezing luffa sponges

A team of mechanical engineers at Beihang University, Peking University and the University of Houston has found that it is possible to capture small amounts of electricity by repeatedly squeezing treated luffa sponges. In their study, reported in Proceedings of the National Academy of Sciences, the group treated sample luffa sponges and measured the electricity they generated when repeatedly squeezed.

Prior research has shown that applying force or stress to certain materials can result in an accumulation of a piezoelectric charge. Prior research has also shown that repeatedly applying and releasing the force or stress can result in the production of a flow of piezoelectricity.

Over the past several years, engineers have investigated the possibility of generating small amounts of piezoelectricity by taking advantage of footsteps, for example, or the movement of clothes as a person walks. Electricity generated and collected in such ways is seen as a possible way to charge personal devices. In this new effort, the research team looked into use of a new kind of material to generate piezoelectricity—luffa sponges.

Luffa sponges are porous shells that are left behind when the fruit of a luffa plant is left to dry. They have been prepared and sold as a commercial product, mainly as a tool for removing dead skin from the body while in the shower. In this new effort, the researchers looked at luffa as a possible tool for generating small amounts of electricity.

They first treated them with chemicals to remove hemicellulose and lignin, leaving behind a cellulose crystal shell. Then, they connected the results to an electrical circuit and began squeezing them over and over by hand. The research team found they were able to generate up to 8 nanoamps of electricity.

They acknowledge that the amount of electricity generated is so small that it likely would not be of much use, but they also suggest that artificially created luffa sponges could be created that would be more efficient. They could also be made a lot bigger to generate useable amounts of electricity.

 

 


 

 

Source  Tech Xplore

Desalination system could produce freshwater that is cheaper than tap water

Desalination system could produce freshwater that is cheaper than tap water

Engineers at MIT and in China are aiming to turn seawater into drinking water with a completely passive device that is inspired by the ocean, and powered by the sun.

In a paper appearing in the journal Joule, the team outlines the design for a new solar desalination system that takes in saltwater and heats it with natural sunlight.

The configuration of the device allows water to circulate in swirling eddies, in a manner similar to the much larger “thermohaline” circulation of the ocean. This circulation, combined with the sun’s heat, drives water to evaporate, leaving salt behind. The resulting water vapor can then be condensed and collected as pure, drinkable water. In the meantime, the leftover salt continues to circulate through and out of the device, rather than accumulating and clogging the system.

The new system has a higher water-production rate and a higher salt-rejection rate than all other passive solar desalination concepts currently being tested.

The researchers estimate that if the system is scaled up to the size of a small suitcase, it could produce about 4–6 liters of drinking water per hour and last several years before requiring replacement parts. At this scale and performance, the system could produce drinking water at a rate and price that is cheaper than tap water.

“For the first time, it is possible for water, produced by sunlight, to be even cheaper than tap water,” says Lenan Zhang, a research scientist in MIT’s Device Research Laboratory.

The team envisions a scaled-up device could passively produce enough drinking water to meet the daily requirements of a small family. The system could also supply off-grid, coastal communities where seawater is easily accessible.

Zhang’s study co-authors include MIT graduate student Yang Zhong, and Evelyn Wang, the Ford Professor of Engineering, along with Jintong Gao, Jinfang You, Zhanyu Ye, Ruzhu Wang, and Zhenyuan Xu of Shanghai Jiao Tong University in China.

 

A powerful convection

The team’s new system improves on their previous design—a similar concept of multiple layers, called stages. Each stage contained an evaporator and a condenser that used heat from the sun to passively separate salt from incoming water.

That design, which the team tested on the roof of an MIT building, efficiently converted the sun’s energy to evaporate water, which was then condensed into drinkable water. But the salt that was left over quickly accumulated as crystals that clogged the system after a few days. In a real-world setting, a user would have to place stages on a frequent basis, which would significantly increase the system’s overall cost.

In a follow-up effort, they devised a solution with a similar layered configuration, this time with an added feature that helped to circulate the incoming water as well as any leftover salt. While this design prevented salt from settling and accumulating on the device, it desalinated water at a relatively low rate.

In the latest iteration, the team believes it has landed on a design that achieves both a high water-production rate, and high salt rejection, meaning that the system can quickly and reliably produce drinking water for an extended period.

The key to their new design is a combination of their two previous concepts: a multistage system of evaporators and condensers, that is also configured to boost the circulation of water—and salt—within each stage.

“We introduce now an even more powerful convection, that is similar to what we typically see in the ocean, at kilometer-long scales,” Xu says.

The small circulations generated in the team’s new system is similar to the “thermohaline” convection in the ocean—a phenomenon that drives the movement of water around the world, based on differences in sea temperature (“thermo”) and salinity (“haline”).

“When seawater is exposed to air, sunlight drives water to evaporate. Once water leaves the surface, salt remains. And the higher the salt concentration, the denser the liquid, and this heavier water wants to flow downward,” Zhang explains. “By mimicking this kilometer-wide phenomena in small box, we can take advantage of this feature to reject salt.”

 

Tapping out

The heart of the team’s new design is a single stage that resembles a thin box, topped with a dark material that efficiently absorbs the heat of the sun. Inside, the box is separated into a top and bottom section. Water can flow through the top half, where the ceiling is lined with an evaporator layer that uses the sun’s heat to warm up and evaporate any water in direct contact.

The water vapor is then funneled to the bottom half of the box, where a condensing layer air-cools the vapor into salt-free, drinkable liquid. The researchers set the entire box at a tilt within a larger, empty vessel, then attached a tube from the top half of the box down through the bottom of the vessel, and floated the vessel in saltwater.

In this configuration, water can naturally push up through the tube and into the box, where the tilt of the box, combined with the thermal energy from the sun, induces the water to swirl as it flows through. The small eddies help to bring water in contact with the upper evaporating layer while keeping salt circulating, rather than settling and clogging.

The team built several prototypes, with one, three, and 10 stages, and tested their performance in water of varying salinity, including natural seawater and water that was seven times saltier.

From these tests, the researchers calculated that if each stage were scaled up to a square meter, it would produce up to 5 liters of drinking water per hour, and that the system could desalinate water without accumulating salt for several years. Given this extended lifetime, and the fact that the system is entirely passive, requiring no electricity to run, the team estimates that the overall cost of running the system would be cheaper than what it costs to produce tap water in the United States.

“We show that this device is capable of achieving a long lifetime,” Zhong says. “That means that, for the first time, it is possible for drinking water produced by sunlight to be cheaper than tap water. This opens up the possibility for solar desalination to address real-world problems.”

 

 


 

 

Source  Tech Xplore