Search for any green Service

Find green products from around the world in one place

Four cheap ways to save energy at home

Four cheap ways to save energy at home
Making your home more energy efficient can be costly and may not be possible if you’re renting, or you don’t have thousands of pounds stashed away to buy new heat pumps and double glazing.

But there are some cheap solutions to try to save money. We’ve looked at where you are likely to be losing the most energy in your home and come up with some simple solutions to help save money on your bills and keep warm this winter.

 

1. Doors

Warm air wants to leave your home and will find any nook and cranny to do so. As it does, cold air is sucked in to replace it, causing draughts. It makes your home cold and wastes energy.

Shutting doors and closing windows may not be enough as any gaps in the frames allow warm air to escape – and that costs money. On this thermal image, the draughts show up as the coldest areas around a front door.

The coolest temperatures are black, purple and blue and the draughts are shown around the door in these colours, says James Richardson, of IRT Surveys – which uses thermal imaging to help home owners identify where heat is being lost.

The letter box, often an escape route for hot air, appears warm (red and yellow colours) so it is likely to be well-sealed and insulated.

But by simply adding a draught excluder – or even a rolled up towel – the draughts can be blocked, as we can see in these before and after images:

 

 

Energy firms and energy-saving campaigners agree one of the simplest solutions to keeping out the cold is to use a draught excluder. Combined with draught-proofing of windows and doors, it could help cut around £25 a year off your bills.

Having a rolled-up towel by the front door may not be the most attractive household feature, but you can always try to make and decorate one yourself.

 

 

It is important to make sure the draught excluder covers the width of the door. And for a no-sew method, use strips of the discarded material to make ties and tie up each end of the trouser leg instead.

If you don’t fancy cutting up your jeans you could just use a rectangular piece of material to make a tube and fill in a similar fashion. You’ll end up with a more regular-shaped excluder.

For the really crafty, or Team GB Olympic gold medal-winning divers perhaps, Home Energy Scotland have a pattern for a knitted version.

 

2. Windows

Badly fitting windows or single panes of glass are another place heat is often lost.

If you can’t get windows replaced with double glazing, the Energy Saving Trust says it is worth getting some heavy curtains to help keep the heat in the room.

Again, the thermal images show how closing the curtains traps that heat in with you.

 

 

You may not want to sit in the dark all day, so look out for cheap DIY kits available that use a thin plastic sheet to cover the window, blocking draughts.

They are sometimes shrink-fitted into place with a hairdryer and can be removed and replaced as required.

 

3. Loft hatch

Insulating your loft is like wearing a woolly hat – trapping the warmth below to keep you cosy. However, that hatch is just like any other door and needs attention too.

Even James was surprised by the thermal image showing heat being lost around the frame. But it’s an easy fix, making sure it is snugly insulated around the edges.

One suggestion online is to glue a plastic bag to the back of the hatch, fill it some of the loft insulation and then seal it up. It should help insulate the hatch and flop over the edges when you pull it shut, stopping draughts escaping.

 

 

4: Behaviour

There are lots of little things we can do around the home that will help save energy and money that just require tweaks to our behaviour rather than installing, fitting or making anything.

Most energy companies will install a smart meter for free so you can help monitor your energy use and spending.

But there are other small changes to your daily routine that cost nothing and save energy. The obvious ones are spending less time in the shower (potentially saving about £10 a year), turning off the lights (£14) or turning down the thermostat (saving up to£55).

The Eco-Experts blog recommends “heating the humans, not the building” – so perhaps don’t keep the central heating on all the time if you’re not cold, and don’t heat rooms you’re not in.

Other ideas include:

  • Put lids on pots and pans when cooking – it’ll be done quicker
  • Use a microwave to reheat food rather than the oven
  • Don’t overfill the kettle. Filling a kettle for two cups of tea rather than boiling a full kettle could save you around £45 a year
  • Defrost your fridge – it will work more efficiently
  • Buy a smaller telly – Age UK says in general smaller TVs cost less to run and plasma screens use more electricity

And finally there is the old favourite – repeated by parents down the ages and still on the advice the elderly by Age UK – if you’re cold, put on an extra layer – several thin layers of clothing will keep you warmer than one thick layer, as the layers trap warm air between them.

 


 

Source BBC

Turning fungi into ‘bricks’ for construction

Turning fungi into ‘bricks’ for construction

A house or building made of mushrooms may sound far-fetched and fragile, but do not underestimate the strength of the mycelium, a hardy component of the fungi.

Researchers in Singapore and Switzerland are now studying the use of mycelium as a sustainable building construction material.

Mycelium is the vast underground root network of fungi.

The mushroom one sees is merely the fruiting body, making up just a small part of the fungus. This means the bulk of a fungus grows underground.

In a 2019 documentary titled Fantastic Fungi, it was reported that there are 480km of mycelium under every footstep one takes in the forest.

When cultured in the lab, a mass of mycelium looks like white fluff.

Although delicate-looking, this “fluff” is being turned into “mushroom bricks” for construction as part of a research project.

The branching threads are made of substances such as chitin and cellulose that are known to be strong, said Assistant Professor Hortense Le Ferrand, a co-investigator in the project under the Future Cities Lab (FCL) Global programme.

The programme was launched late last year at the Singapore-ETH Centre – a collaborative research centre between Singapore institutions and Swiss university ETH Zurich.

The research on using mycelium for building construction is one of eight projects in the programme focusing on enhancing the sustainability of cities and human settlements.

 

Buildings and construction generate about 40 per cent of planet-warming carbon dioxide, according to the 2019 Global Status Report for Buildings and Construction. A quarter of the emissions came from manufacturing building materials and products such as glass, cement and steel.

Between 2016 and 2019, construction and demolition generated the largest amount of waste in Singapore – between 1.4 million and 1.6 million tonnes a year – although 99 per cent of the waste is recycled here. This is where mycelium comes in handy.

Mycelium cannot turn into an eco-friendly building block on its own. It needs plant-based waste or food waste such as sawdust, bamboo or coffee grounds as a medium.

When a fungus is grown on a bed of sawdust or corn stalks, the mycelium branches out and snakes through the fragments of waste, binding to them. It takes three to four weeks for the mycelium network to grow and bond with every fragment of waste. The mass is then cast into a mould to be shaped into a mushroom brick. Once the material has lived through its lifespan, it can be composted instead of filling up landfills.

 

Fungi is grown on a bed of sawdust and cornstalks, with the mycelium binding to the waste. After three to four weeks, the mycelium-based mass is cast into a mould to form the mushroom brick. PHOTO: COURTESY OF THE LIVING

 

The mushroom brick has been around for a few years, mainly showcased in installations. Now, the researchers want to optimise the use of mycelium for building construction.

Mycelium’s growth depends on factors including the species of fungi, type of plant-based waste, temperature and humidity, said Prof Le Ferrand at a virtual presentation hosted by FCL Global earlier this month.

Different species of fungi produce mycelium with different qualities.

“Studying the amount of chitin and cellulose that fungi produce is one way to find out which species and growth conditions yield the strongest mycelium,” said Prof Le Ferrand, who is a faculty member at Nanyang Technological University’s School of Materials Science and Engineering.

Over the next five years, Prof Le Ferrand and her team will conduct studies to optimise the growth of mycelium and explore how 3D printing can be used to build a mycelium-based structure.

 

The MycoTree – a branching structure made out of load-bearing mycelium components – that was exhibited at the Seoul Biennale of Architecture from September 2017 to March 2018. PHOTO: CARLINA TETERIS

 

The project’s team in ETH Zurich is improving on the mushroom brick’s function and exploring suitable architectural applications.

Dr Juney Lee, a senior researcher at the Swiss institute and another co-investigator of the project, said at the presentation: “These alternative and sustainable materials tend to be much weaker than concrete or steel, so they require an intelligent geometry and structural shape.”

 

Mushroom Bricks

Scientists from Singapore and Switzerland have recently embarked on a five-year research project to find out how a hardy component in fungi, known as mycelium, can be used in construction. Here are some details on the process.

 

What is mycelium?

 

The fluffy white material growing inside this petri-dish of agar is called mycelium. PHOTO: EUGENE SOH, NTU

 

Mycelium is the underground root network of a mushroom, with threads that are measured in kilometres.

Under an electron microscope, mycelium threads branch out to form an intricate, interconnected web. A mass of mycelium has more networks than the number of neural pathways in a brain.

 

Why is mycelium a promising construction material?

Mycelium is rich in substances such as cellulose and chitin which are known to be mechanically strong.

It is also re-resistant, lightweight, and absorbs sound.

When a fungus or mushroom grows on plant-based waste such as sawdust or corn stalks, the fast-growing mycelium threads will bind the loose waste materials together into a mass – forming the building blocks of a “mushroom brick”.

 

How is mycelium sustainable?

 

Mycelium growing on a bed of sawdust (left) and after a week’s worth of growth. PHOTOS: EUGENE SOH, NTU

 

Mycelium is organic and biodegradable – once a structure or furniture made of mycelium and agricultural waste has ended its lifespan, the material can be composted. This means the renewable building block can return to the earth instead of taking up space in landfills.

In addition, mycelium does not need to grow on soil. It can grow within agricultural waste such as used coffee grounds, leaves and bamboo fragments, including food waste. The threads also do not need to compete for land with food crops.

 

How does mycelium work?

 

A closer look at how the fine, mycelium web (centre) binds to bamboo fibre – to form a tightly connected mass. PHOTO: EUGENE SOH, NTU

 

As a fungus grows on the waste, the mycelium net gets thicker, and acts like a natural glue to fuse the loose materials together. Mycelium secretes proteins that allow the threads to bind with the fragments.

This process takes three to four weeks of growth for the web to hold everything together.

Factors affecting mycelium growth include the size and type of agricultural waste, temperature, humidity, amount of light and water, and species of fungus.

 

How do they become bricks?

 

Finished mushroom bricks. PHOTO: DR NAZANIN SAEIDI, SEC

 

The mycelium-based mass goes into a mould to be shaped into a building block to form the bricks. The bricks will then be heated or baked to stop the mycelium from continuing to grow.

 

How are mycelium bricks used?

Building materials made of mycelium or other sustainable materials are much weaker than conventional concrete or steel. Mushroom bricks are weak in tension. Therefore, structures made of mycelium-based blocks need intelligent, structural shapes to make them stable.

 

“Mushroom bricks” (background) made from mycelium and hemp, and after they have been hot-pressed into slabs (foreground). PHOTO: SELINA BITTING

 

Mushroom bricks can be put through a process of compressing to increase their density and their compressive strength.

Mycelium-based materials can also be used as floor tiles and acoustic panels.

  • Sources: Asst prof Hortense Le Ferrand, Dr Juney Lee, World-Archi Tects

 


 

Source The Straits Times