Search for any green Service

Find green products from around the world in one place

Intel is using hot water to cut natural gas use in its factories

Intel is using hot water to cut natural gas use in its factories

Intel’s new manufacturing plant in Leixlip, Ireland, which cost $18.5 billion to build, is replete with technologies touted for conserving energy and water including programmable, all-LED lighting and a water reclamation and filtration system that could save 275 million gallons a year.

One of its more unusual features, however, is an approach that’s often overlooked: capturing heat generated by equipment in the facility and funneling it into production processes rather than expelling it through cooling towers. This was accomplished by the installation of recovery chillers that capture heat created by Intel’s high-temperature manufacturing processes and pipe it in the form of heated water to other places at the facility.

Intel estimates these heat recovery measures will allow it to significantly cut the natural gas it must buy to run operations at the site, Fab 34. It will use nine times as much recovered energy than what is generated by other fuels, the company projects. That so-called “waste heat” can be used for tasks such as preheating the ultra-pure water Intel needs for semiconductor fabrication or keeping buildings at the site warm during cooler weather, said Rich Riley, principal engineer in Intel’s corporate services development group.

“If we didn’t have that heat, we would need that much more gas to facilitate the [heating, ventilation and air-conditioning] operations,” Riley said. “This is an overall reduction of natural gas consumption.”

Over time, Intel’s plan is to build on heat recovery and other energy efficiency measures by updating them with industrial equipment, such as heat pumps, that run on electricity.

Intel’s near-term energy-related sustainability goals include reducing Scope 1 and 2 emissions by 10 percent by 2030 from a 2019 baseline (it has achieved 4 percent as of fiscal year 2022); and conserving up to 4 billion kilowatt-hours cumulatively.

 

An untapped source of energy efficiency

Intel hasn’t disclosed the potential impact on its carbon emissions this heat recovery at Fab 34 effort could have, but a retrofit using water-to-water heat pumps in Fab 10 (also in Leixlip) will save an estimated 18.3 million kilowatt-hours of electricity annually. It will reduce Scope 1 emissions by about 4,760 metric tons, but Scope 2 emissions will increase by about 1,627 metric tons because of the electricity needed for the heat pumps.

Industrial energy remains a thorny challenge for corporate sustainability teams: An estimated 20 percent to 25 percent of energy consumed globally by industrial sources is still predominantly powered by coal and natural gas, according to the International Energy Agency.

The potential energy cost savings of using recovered waste heat for industrial processes, district heating applications or to generate electricity could reach up to $152.5 billion annually, slightly less than half the value of the natural gas imported by the European Union in 2022, according to a McKinsey report published in November. The analysis estimates the global recoverable heat potential is at least 3,100 terawatt-hours.

“In our view, if you want to decarbonize, heat recovery and waste heat is one of the most economical levers available,” said Ken Somers, a McKinsey partner who was one of the report’s authors. One barrier to adoption has been low natural gas prices, but tariffs and supply shortages have prompted companies to rethink their dependence, he said.

The industrial heat pump technology needed to move heat from where it’s generated to where it’s needed in a production process is also maturing. The potential for manufacturers of chemicals, consumer products, food and pharmaceuticals to use this approach is growing as a precursor to the electrification of production systems, said Patricia Provot, president of thermal production equipment manufacturer Armstrong International.

“If your plan is to fully decarbonize, your first step is to get rid of steam and use hot water, and then try to recover as much of that waste heat as possible and put it back into the system,” Provot said.

 

 


 

 

Source   GreenBiz Group Inc

This is how worms could help to eat up the planet’s plastic pollution.

This is how worms could help to eat up the planet’s plastic pollution.
  • Research has found mealworms can eat plastic and still be nutritious as food for other animals.
  • Even those that ate Styrofoam, which contains a toxic chemical, seemed to show no adverse side-effects and the chemical didn’t build up in its body.

New findings suggest mealworms could be the solution to our big plastic problem.

They can not only consume various forms of plastic, but also Styrofoam containing a common and toxic chemical additive. And even after that meal, they can serve as protein-rich feedstock for other animals.

The study is the first to look at where chemicals in plastic end up after being broken down in a natural system—a yellow mealworm’s gut, in this case. It serves as a proof of concept for deriving value from plastic waste.

“This is definitely not what we expected to see,” says Anja Malawi Brandon, a PhD candidate in civil and environmental engineering at Stanford University and lead author of the paper in Environmental Science & Technology.

 

The process of how meal worms could help to minimize plastic waste.
Image: Environmental Science and Technology

 

“It’s amazing that mealworms can eat a chemical additive without it building up in their body over time.”

Mealworms as animal food

In earlier work, researchers revealed that mealworms, which are easy to cultivate and widely used as a food for animals ranging from chickens and snakes to fish and shrimp, can subsist on a diet of various types of plastic.

They found that microorganisms in the worms’ guts biodegrade the plastic in the process—a surprising and hopeful finding. However, concern remained about whether it was safe to use the plastic-eating mealworms as feed for other animals given the possibility that harmful chemicals in plastic additives might accumulate in the worms over time.

“This work provides an answer to many people who asked us whether it is safe to feed animals with mealworms that ate Styrofoam“, says Wei-Min Wu, a senior research engineer in the civil and environmental engineering department.

The researchers looked at Styrofoam or polystyrene, a common plastic typically used for packaging and insulation that is costly to recycle because of its low density and bulkiness.

It contains a flame retardant called hexabromocyclododecane, or HBCD, commonly added to polystyrene. The additive is one of many used to improve plastics’ manufacturing properties or decrease flammability.

Plastic, worms, shrimp

In 2015 alone, nearly 25 million metric tons of these chemicals were added to plastics, according to various studies. Some, such as HBCD, can have significant health and environmental impacts, ranging from endocrine disruption to neurotoxicity. Because of this, the European Union plans to ban HBCD, and US Environmental Protection Agency is evaluating its risk.

Mealworms in the experiment excreted about half of the polystyrene they consumed as tiny, partially degraded fragments and the other half as carbon dioxide. With it, they excreted the HBCD—about 90% within 24 hours of consumption and essentially all of it after 48 hours.

Mealworms fed a steady diet of HBCD-laden polystyrene remained as healthy as those eating a normal diet. The same was true of shrimp fed a steady diet of the HBCD-ingesting mealworms and their counterparts on a normal diet. The plastic in the mealworms’ guts likely played an important role in concentrating and removing the HBCD.

The researchers acknowledge that mealworm-excreted HBCD still poses a hazard, and that other common plastic additives may have different fates within plastic-degrading mealworms. While hopeful for mealworm-derived solutions to the world’s plastic waste crisis, they caution that lasting answers will only come in the form of biodegradable plastic replacement materials and reduced reliance on single-use products.

“This is a wake-up call,” Brandon says. “It reminds us that we need to think about what we’re adding to our plastics and how we deal with it.”