Search for any green Service

Find green products from around the world in one place

6 Types of Cool Roof Technology

6 Types of Cool Roof Technology

Cool Roof Technology: a Low-cost Way to Reduce Energy Consumption and Carbon Emissions

Want a huge decrease in carbon emissions, a reduction in summertime cooling costs and a more efficient home? Cool roof technology can do all that. Cool roof technology has the potential to eliminate billions of tons of carbon dioxide at a very low cost.

If you’ve ever spent time on a black asphalt roof or up in an attic during the heat of summer, you understand how much heat energy is added to a home during summer months. This is heat that many of us pay to remove by using air conditioners and other means.

But what if, just by a better design and choice of materials, we could have a far cooler house that uses far less electricity each month? That is what people in the Mediterranean and other hot climates have been doing for centuries. White paint and chimney-style ventilation that distributes cool air from lower areas of the house are low-tech examples of cool roof technology that works.

Modern cool roof technology is similar. Most are just like regular roofs but are designed to reflect sunlight and shed heat, to keep buildings cooler in the summer. According to a study by the National Renewable Energy Laboratory (NREL), cool roof technology could reduce energy consumption for cooling by up to 20%. The study also found that energy savings from cool roof technology could eliminate up to 1.4 billion tons of carbon dioxide emissions annually in the United States. The equivalent of taking 300 million cars off the road!

According to Lawrence Berkeley National Laboratory, if all North American cities with populations over 1 million people adopted cool roof technology, air conditioner use would fall by one-third.

The Human Cost of Heat

The savings aren’t just in terms of money and carbon emissions. Climate change has disproportionately increased temperatures in urban areas. An urban landscape largely covered in asphalt, concrete and black roofing materials is far hotter than one covered in greenery or reflective materials, a phenomenon known as the urban heat island effect.

The urban heat island effect is the phenomenon of cities being warmer than surrounding rural areas. This is because cities have more dark surfaces, such as black roofs, which absorb sunlight and heat up the air. The heated air then rises, creating a convection current that draws in cooler air from surrounding areas. This process can lead to increased temperatures in cities, which can have a number of negative consequences, such as increased energy consumption for cooling, decreased air quality, and increased heat-related illnesses and deaths.

Black roofs also radiate energy directly into the atmosphere. This energy is then absorbed by clouds and trapped by the greenhouse effect, further contributing to global warming.

Type Depends on Location Climate

There are a number of different types of cool roof technology available, including:

  • Reflective roofs: Reflective roofs are the most common type of cool roof. They are made of materials that reflect sunlight, such as white or light-colored tiles, metal roofs, or paints. Reflective roofs can reflect up to 90% of the sun’s heat, which can help to keep buildings cooler in the summer.
  • Evaporative roofs: Evaporative roofs are made of materials that allow water to evaporate, such as clay tiles or metal roofs with a water-absorbing coating. As the water evaporates, it cools the roof and the building below. Evaporative roofs can be effective in hot, dry climates.
  • Phase-change materials: Phase-change materials are materials that change their state from solid to liquid and vice versa. When these materials change phase, they absorb or release heat. Phase-change materials can be used in cool roofs to store heat during the day and release it at night. This can help to keep buildings cooler in the summer and warmer in the winter.
  • Cooling paints: Cooling paints are paints that are applied to roofs to make them more reflective and to help them cool down. Cooling paints are effective in hot, sunny climates and typically contain titanium dioxide, a highly reflective pigment.
  • Cooling granules: Cooling granules are small, reflective beads applied to roofing materials like shingles. The granules reflect sunlight and help to keep the roof cooler. Like cooling paints, cooling granules are most effective in hot, sunny climates.

 

Green Roofs are Cool Roofs

Another type of cool roof technology is the green roof. Green roofs are made of a waterproof membrane with a layer of soil and vegetation on top that helps to insulate the roof and reflect sunlight. Green roofs can reflect up to 70% of the sun’s heat, which can help to keep buildings cooler in the summer. In some cases, they can provide vegetable gardens or just a nice place to sit and enjoy the feeling of being surrounded by nature – while in the city.

Green roofs also have the effect of providing bird and pollinator habitat as well as reducing stormwater runoff. Because of the benefits, many cities are now mandating the installation of green roofs on new construction. New York, San Francisco, Chicago, Seattle and Portland all require green roofs on new construction on buildings with roof areas over a specific set size. That said, retrofitting an existing building is often cost prohibitive due to the structural requirements to support the additional weight.

Cool roof technology is a promising way to reduce greenhouse gas emissions and improve the energy efficiency of buildings. As the technology continues to develop, the potential for cool roofs to reduce carbon dioxide emissions will likely increase.

This is an easy way to make big gains in carbon reductions, saving homeowners and businesses money. Something we can all get behind.

 

 


 

 

Source Happy Eco News

JDE Peet’s announce new sustainable coffee packaging

JDE Peet’s announce new sustainable coffee packaging

JDE Peet’s is an American-Dutch coffee and tea company with a portfolio of over 50 brands including L’OR, Peet’s, Jacobs, Senseo, Tassimo, Douwe Egberts, Old Town, Super, Pickwick and Moccona.

In 2022, JDE Peet’s generated total sales of US$9.2bn, employed a global workforce of more than 20,000 employees and served approximately 4,200 cups of coffee or tea per second.

Pioneers: Sustainable packaging launch

JDE Peet’s have launched a first-of-its-kind packaging for its soluble coffee ranges as part of its net zero sustainability initiatives.

The paper packaging is recyclable and encourages consumers to reuse glass and plastic jars already in circulation.

“This is an important step in driving the sustainability agenda of our company and yet another sign of our leadership in innovation. We know that reducing packaging and promoting recyclability and reusability are increasing consumer needs,” says Fabien Simon, CEO of JDE Peet’s.

“By providing more sustainable solutions within soluble coffee, one of the world’s most beloved and consumed beverages, we can maximize our positive contribution in decarbonizing our own portfolios and the coffee market as a whole.”

Sustainability at the heart of coffee production

The packaging launch supports JDE Peet’s efforts to use 100% reusable, recyclable or compostable packaging by 2030 — 78% of its packaging is currently.

The company’s ESG initiatives operate throughout the brands, from sustainable sourcing, to burning waste coffee at factories to save landfill.

The Common Grounds programme champions an inclusive and regenerative ecosystem comprised of three pillars:

  • Responsible Sourcing — championing regenerative agriculture to enhance livelihoods and positively impact our planet. JDE Peet’s achieved its goal of 100% responsibly sourced palm oil by 2025 three years early.
  • Minimizing Footprint — striving towards a planet-positive supply chain through innovation and collaboration on sustainable solutions. JDE Peet’s has achieved zero waste-to-landfill at 22 of its 43 manufacturing facilities, and is aiming for all 43 by 2025.
  • Connecting People — engaging colleagues and communities to support wellbeing and promote equal opportunity. JDE Peet’s have 40% women in leadership positions, a target it had set for 2025.

“Having set carbon reduction targets with the science based targets initiative, we priorities energy efficiency projects,” says Dyfrig Davies, Engineering Manager at the JDE Coffee Manufacturing Factory in Banbury, UK.

“We’ve committed to these targets and now we have to deliver them. we’re taking action for humanity — and doing right by the planet is the right thing to do for our business as well.”


SAY Carbon is creating the coolest sustainable boat brand

SAY Carbon is creating the coolest sustainable boat brand

BizClik Media and Sustainability Magazine CEO Glen White had first-hand experience aboard a luxurious, environmentally-friendly yacht made by SAY Carbon Yachts.

The business, founded in Germany, produces cutting-edge, technologically advanced yachts, which are built using carbon fibre. Featuring three luxurious yachts – the SAY 29 (E), SAY 42 and SAY 52 – the business prioritises comfort, luxury and sustainability. While enjoying a trip to Ibiza, Spain, White got up close and personal with the SAY 42.

SAY 42: Ultra-low-emission engines combined with maximum comfort

Boasting low emissions and high performance, the SAY 42 demonstrates that stylish, luxurious and sustainable boating is possible – even for those who want to enjoy the seas with their family and friends

The SAY 42 is equipped with two certified ultra-low-emission V8 engines (860 hp) that consume up to 50% less fuel compared to conventional motor yachts, all while maintaining the same renowned performance.

The SAY 42 is ideal for those who appreciate extravagance. Each yacht is characterised by a modern design, featuring striking and unique lines and is equipped with state-of-the-art technology, including a digital cockpit, Seakeeper 2 stabilisers, pop-up showers, a retractable table and an owner’s cabin with a fully-equipped bathroom.

To ensure the yachts meet the highest possible sustainability standards while continuing to ooze luxury, CEO Karl Wagner, maintains control over every aspect of the manufacturing process. Every SAY Carbon Yacht is meticulously crafted to bring the customer’s vision to life, designed to be user-friendly while promoting maximum comfort.

 

SAY Yachts leading carbon fibre adoption

While working with his previous business, Carbo Tech, Wagner became a leading producer of carbon-fibre-reinforced components for the automotive industry. Its customer base included prominent names from Formula 1, including Aston Martin, McLaren and Porsche.

The numerous advantages of carbon fibre have led to its widespread popularity in various industries, including aviation, construction and motorsports. As pioneers in the pursuit of lightweight design, Wagner and his team demonstrate their expertise in manufacturing innovative motor yachts by utilising the properties of carbon fibre.

“Our expertise in lightweight constructions enables us to achieve a unique combination of acceleration, design and agility while lowering fuel consumption and extending range,” Wagner comments.

Consequently, SAY Yachts has emerged as an international, established manufacturer of luxury motor boats, offering only the highest quality available.

 

 


 

 

Source  Sustainability

According To New Study, Dust Absorbed By Phytoplankton Benefits Them

According To New Study, Dust Absorbed By Phytoplankton Benefits Them

Carbon prevention or carbon capture?

A significant amount of the conversation surrounding climate change concerns the release of carbon dioxide into our atmosphere. While this is important, the priority is most concerned with reducing or eliminating fossil fuel emissions.

While achieving this goal is paramount in creating a clean, eco-friendly world, the topic of carbon sequestration has been under the radar until recently. When most think of carbon sequestration, they imagine carbon capture and storage (CCS) technology or think of trees.

Both are valuable and productive carbon sequesters; however, they are not the only areas or mechanisms useful for reducing carbon dioxide in our atmosphere. Our world’s oceans are single-handedly the largest carbon sinks we have, and many marine organisms participate in this important process.

Phytoplankton makes up an important role in carbon deposition onto the ocean floor. In recent years, they have been thriving due to mass amounts of dust being created and deposited.

Carbon sinks and carbon eaters.

In the ocean, there are multitudes of different organisms sequestering carbon. Seagrass is one of the largest carbon sequesters and provides large habitats for other fish and marine animals to thrive in.

However, despite the outsize role that some marine organisms play in carbon sequestration, phytoplankton also makes up a key role.

Phytoplankton generally pulls up their nutrients from the ocean and use those nutrients to turn carbon dioxide into organic matter, which then gets deposited back onto the ocean floor.

Due to climate change-induced wildfires and natural disasters, phytoplankton have been thriving in recent years. According to a new study published in Science Magazine and led by Toby Westberry out of Oregon State University, there is a direct correlation between the amount of dust being brought into the ocean and the numbers and health of phytoplankton in the area.

They used satellite imaging to observe the differences in the coloration of the water before and after a major dust storm or wildfire occurred. They noticed that the water in the affected areas began to turn green, indicating larger numbers of phytoplankton.

The researchers also found that depending on the altitude of the marine environment, there is an observed difference in the health and numbers of phytoplankton. In lower altitude areas, there were fewer phytoplankton despite being healthy, and in higher altitude areas, there were more phytoplankton as well as being more healthy.

It all adds up.

Phytoplankton, while important, doesn’t make up as much of an impact on climate sequestration as one might hope. This is because dust-related phytoplankton growth only makes up 4.5% of the global yearly carbon dioxide absorbed by the ocean. Though, in some areas, the amount of carbon absorbed can reach highs of 40% of the total amount.

Nonetheless, It is important to be aware of the multitudes of different ways carbon sequestration can occur. These systems are large and complex and take up many different forms. To address the issue of storing carbon and removing it from our atmosphere, we must understand it won’t be a “one-size-fits-all” approach that is successful. It will take multiple different mechanisms working together and complementing each other to save our world. Phytoplankton, it seems, will be playing an important role in this.

 

 


 

 

Source Happy Eco News

Etihad Airways plans to use sustainable fuel made from CO2

Etihad Airways plans to use sustainable fuel made from CO2

UAE-based airline Etihad Airways has partnered with Twelve, a carbon transformation company, to promote sustainable aviation fuel (SAF) produced from CO2 and renewable energy.

Twelve combines renewable energy and water to convert CO2 into vital chemicals and materials derived from fossil fuels. This innovative formula reduces lifecycle emissions by 90% compared to traditional fossil-based fuels and is compatible with current aircrafts.

Etihad’s sustainable mission

The new partnership aligns with Etihad’s sustainability goals of achieving net-zero emissions by 2050 and converting waste into fuel, with a target of diverting 75% of waste from landfills by 2025. The collaboration is driven by the growing demand for SAF among various airlines.

In 2019, the airline introduced the Etihad Greenliner Program, which allocated a Boeing 787-10 Dreamliner to focus on sustainability initiatives. The programme aims to identify and tackle key sustainability challenges through partnerships with Boeing and engine manufacturer GE.

SAF aligns with Etihad’s commitment to driving innovation and transforming the aviation industry towards sustainability, and the new partnership reinforces Etihad’s mission and sustainability efforts.

“Etihad Airways is working hard on its sustainability strategy and deploying a range of initiatives across the spectrum of sustainability to achieve that,” Mohammad Al Bulooki, Chief Operating Officer at Etihad said. “Collaborating with sustainable aviation fuel makers like Twelve to advance products like E-Jet fuel is an important part of that drive.”

A long-term solution for addressing aviation emissions

Twelve has developed a low-carbon jet fuel, E-Jet fuel, produced using carbon transformation technology, which has been tested and verified by the US Air Force.

By joining forces, the two businesses aim to plan international demonstration flights to promote SAF in the global market.

Twelve’s CEO, Nicholas Flanders, describes the partnership as an “honour” while highlighting the company’s progress towards a supply of drop-in jet fuel made from air and not oil.

Flanders continues: “Our E-Jet fuel allows airlines like Etihad to reduce emissions by up to 90% with their existing aircraft fleet, which will be critical to achieving the United Nations’ 2050 net-zero emissions target in aviation.”

 

 


 

 

Source  Sustainability

Producing Net Zero Scotch Whiskey

Producing Net Zero Scotch Whiskey

Scotch whiskey, although delicious, is very energy intensive to produce. Creating Scotch whiskey involves a four-step process of malting, mashing, fermentation and distillation. The kettles are heated using natural gas or fossil fuel oil which boils the mash and distils the alcohol. The creation of Scotch whiskey requires burning vast quantities of peat to dry barely. The peat gives the whiskey a smokey flavour. Peatlands are areas that consist of organic materials from decaying plants. The peat captures carbon dioxide normally released during decomposition and is trapped as carbon in the oxygen-free peatland. Peatlands are important carbon sinks as they can sequester 550 gigatonnes of carbon, more than any other vegetation type, including forests. However, once the peat is burned during scotch distillation, all the carbon is released into the atmosphere.

To undo these environmental impacts while continuing to produce Scotch whiskey, owners of the 140 distilleries in Scotland have pledged to recreate their industry into net zero operations by 2040. This is all without government intervention. The Scotch Whisky Association is on board with this pledge as well. The Association wants its customers to imagine a future where distilleries no longer rely on fossil fuels. Instead, they create an industry using energy generated by wind, wood chips and ocean tides.

From 2009 to 2022, the Scotch whiskey industry reduced its carbon emission by more than half and has gone from consuming just 2% renewable to 39%. Offshore wind farms have been installed in Scotland’s coastal waters, near whiskey distillery islands, to pump electricity to land. Distillery co-products as animal feed has begun to shift to their use in bio-energy production. The Association wants scotch producers to funnel the byproducts like draft and pot ale and use it for fertilizer, animal feed and biofuel.

The Association also supports whiskey makers to protect Scotland’s water and consciously recycle their waste. Many distilleries are also moving towards battery-operated vehicles used on their whiskey-tasting tours. Scotland’s government has promised 30 000 new charging stations by 2030, making this possible.

To address their environmental impact on peatland use, the Association and distilleries are actively conserving and restoring Scotland’s peatland by 2035. They are developing a Peat Action Plan to outline how the industry will deliver a net environmental gain. They are also working with agricultural partners to ensure the barley and cereal used to produce Scotch whiskey becomes net zero.

Scotland’s Scotch whiskey distilleries are taking significant and necessary measures to tackle climate change, use water responsibly, move towards a circular economy and care for the land. Their efforts should exemplify all other beverage companies looking to produce products with minimal environmental impact.

 

 


 

 

Source Eco Hero News

Hydrogen’s potential in the net-zero transition

Hydrogen’s potential in the net-zero transition

Hydrogen as a climate solution is generating a lot of excitement right now. Approximately $10 billion worth of hydrogen projects are being announced each month, based on activity over the past six months. Policy packages such as the recent Inflation Reduction Act in the United States and the Green Deal Industrial Plan in Europe support hydrogen production and use. According to McKinsey research, demand is projected to grow four- to sixfold by 2050. Hydrogen has the potential to cut annual global emission2050s by up to 20 percent by 2050.

Today, most hydrogen is produced with fossil fuels. This type is commonly known as grey hydrogen, which is used mostly for oil and gas refining and ammonia production as an input to fertilizer. To maximize hydrogen’s potential as a decarbonization tool, clean hydrogen production must be scaled up. One variety of clean hydrogen is known as green hydrogen, which can be made with renewables instead of fossil fuels. Another variety, often called blue hydrogen, can be produced with fossil fuels combined with measures to significantly lower emissions, such as carbon capture, utilization, and storage. Clean hydrogen has the potential to decarbonize industries including aviation, fertilizer, long-haul trucking, maritime shipping, refining, and steel.

Total planned production for clean hydrogen by 2030 stands at 38 million metric tons annually—a figure that has more than quadrupled since 2020—but there is a long way to go to meet future demand. According to McKinsey analysis, demand for clean hydrogen could grow to between 400 million and 600 million metric tons a year by 2050.

To scale clean hydrogen, three things must happen. First, production costs need to come down so that hydrogen can compete on price with other fuels. One way to keep costs down is by producing hydrogen in locations with abundant, cheaper renewable energy—where the wind blows or the sun shines. While renewables development has accelerated in recent years, a lack of available land could become an issue for the deployment of renewables and could limit location options for green-hydrogen producers. Constructing plants for both renewable generation and green-hydrogen production has become more expensive recently because of increased material and labor costs and constrained supply chains.

“Approximately $10 billion worth of hydrogen projects are being announced each month, based on activity over the past six months.”

Second, building up infrastructure, particularly for transportation of hydrogen, will be key. The most efficient way to transport hydrogen is through pipelines, but these largely need to be built or repurposed from current gas infrastructure. Investment is critical in this and other areas across the value chain, including electrolyzer capacity (electrolyzers use electricity to produce green hydrogen) and hydrogen refueling stations for hydrogen-powered trucks.

Third, more investments will be needed to help advance this solution. Our work with the Hydrogen Council, a CEO-led group with members from more than 140 companies, has shown that achieving a pathway to net zero would require $700 billion in investments by 2030. Despite the recent momentum, McKinsey research last year showed a $460 billion investment gap. Additionally, many announced projects still need to clear key hurdles before they can scale. Producers of clean hydrogen, for example, are looking to address the commercial side of investment risk by solidifying future demand, often in the form of purchase agreements.

A set of actions can help accelerate the hydrogen opportunity, to realize its decarbonization potential and the growth opportunity for businesses. Progress will likely require collaboration among policy makers, industries, and investors. Policy makers can continue supporting the hydrogen economy through measures such as production tax credits or by setting uptake targets. These actions should help boost private investors’ confidence in the future markets for hydrogen and hydrogen-based products. Industry can increase capacities, such as by ramping up production of electrolyzers, and build partnerships through the value chain. Investors can help industry by structuring and financing new ventures, as well as by developing standards for how hydrogen projects can be assessed and how risks can be managed.

As the energy transition unfolds, hydrogen will increasingly be a consideration for both businesses and governments. While the challenges to scaling hydrogen are real, so are the opportunities.

 

 


 

 

By  Markus Wilthaner

Source  McKinsey & Company

 

Old Growth Trees Sequester More Carbon, Help Prevent Wildfires

Old Growth Trees Sequester More Carbon, Help Prevent Wildfires

As we progress through the 21st century, one of the most important issues of our time is carbon. We create much of it by burning fossil fuels, extracting natural resources, or simply by living our day-to-day lives; we create carbon.

We create much more of it than we should, and the research into climate change backs this up. Many of us have devised innovative ways to counteract and slow down our carbon output, while good solutions are ultimately artificial. As it turns out, nature is our most important ally in fighting the devastating effects of climate change.

According to Frontiers in Forests and Global Change research, old-growth large-diameter trees are the most important carbon sinks we have and are significantly more effective at removing and storing carbon from our atmosphere than any other technology we have available in the present day.

Oregon, USA, and the Blue Mountains Complex region, in particular, has been world-renowned for its natural beauty and resources for hundreds of years. The timber industry makes up much of the natural resource extraction sector. However, despite this fact, this area significantly lacks protections guaranteeing the safety of its natural beauty from those who would profit from taking what is there until there is nothing left.

One of the central issues for those living in Oregon is wildfires, which destroy land and towns and devastate those living there. Thus, “chainsaw medicine,” as it’s called in the region, is implemented to reduce the number of trees that can be burned to safeguard their communities from destruction and to turn a profit at the same time. However, recent developments in research in forestry have concluded that this might actually be accelerating the problem and making it worse, not better.

Large-diameter trees comprise only 7% of the total number of trees in the Blue Mountains Complex, yet they sequester 50% of the carbon emitted in the region into their bodies. These trees are incredibly carbon-dense and eat up the carbon in the atmosphere cleaning the air and providing important stability to the soil that prevents landslides.

On top of that, trees that are standing or dead actually prevent wildfires due to wind and humidity. The two main contributors to massive wildfires that spiral out of control are dry, windy conditions that lead sparks that would otherwise be contained and extinguished to engulf an entire forest. The forestry industry cuts down large swaths of the forest leading to large open areas with no shade to regulate the temperature and no obstructions to the wind that blows through freely.

And while global climate change does make historic wildfires much worse than they otherwise would be, indigenous peoples for hundreds of years used controlled burns in order to modify their landscape and regenerate the soil that benefits from ash in the dirt.

This new research has the capability to seriously challenge the conventional view on wildfires, as legislation is currently being introduced that can protect the pristine forests of Oregon from the industry that seeks to extract the trees and release all that carbon that otherwise would be contained in the bark.

As the world changes and new technologies are being developed and implemented in order to address our climate crisis, mother nature once again proves to us that often the right choice is to use what we already have. We like to believe that we are the most ingenious and intelligent life on the planet, but ultimately we come from the dirt and will return to it.

It only makes sense that we should begin respecting the solutions that come from the ground and dig our roots deeper to protect what is already here. New legislation that can bring about what is good for the environment has to be of top priority because, at the end of the day, we are not defending nature; we are nature defending itself.

 

 


 

 

Source Happy Eco News

UK faltering on green steel production

UK faltering on green steel production

The Energy and Climate Intelligence Unit (ECIU) has today (7 March) reported that the UK falling further behind in the race to develop green steel plants. The ECIU has found that in 2021, the UK had zero planned green steel projects, compared to 23 in the EU. Overall, the UK has one project compared to 38 in the EU.

Around 10 EU plants have started producing green steel with renewable energy and green hydrogen, made through electrolysis from renewable electricity and producing no emissions. Since 2021, the number of these green steel projects has doubled, either in the form of new sites or older ones switching from blue hydrogen in the past two years.

The UK, on the other hand, has one planned project at British Steel’s Scunthorpe plant which is part of the Zero Carbon Humber initiative. The project would use blue hydrogen – commonly produced from gas and combined with carbon capture technologies. However, the Russian invasion of Ukraine has seen more than $70bn invested in green hydrogen initiatives globally as many nations have balked at the rising costs of blue hydrogen.

The ECIU’s energy analyst Jess Ralston said: “With car manufacturers starting to seek out sources of green steel to back their EV expansions, will the UK be in a position to compete? The gas crisis has spurred a dash from the US and EU to build green industries. Does the Chancellor have something up his sleeve to ensure the UK doesn’t fall further behind on steel?”

 

UK issues

At the start of the year, it emerged that the UK Government was planning two grants of £300m each for British Steel and Tata Steel, with requirements to cut carbon. It is also allegedly set to consult on a carbon border tax for steel.

A letter from the sector to MPs detailed how “crippling energy costs, carbon taxes, lost markets, lower demand, and open market access for imported steel” have compounded to leave the sector “a whisker away from collapse”. Liberty Steel this month announced plants in West Bromwich, Newport and Tredegar would be made idle as part of a restructuring of its business, partly due to high energy costs.

Around 2% of the UK’s total emissions or 14% of its industrial emissions are attributable to iron and steel production.

British Steel has previously pressed for up to £1bn of Government support to adopt technologies that will enable it to align with the UK’s legally binding net-zero carbon target for 2050. Tata Steel is reportedly pricing the transition of its Port Talbot steelworks to net-zero at up to £3bn.

More broadly, trade body UK Steel has warned that steelmakers in the UK are being deterred from shifting to lower-carbon, electricity-powered operations by prohibitively high industrial electricity prices.

The organisation, convened by the manufacturing sector organisation Make UK, outlined its vision for aligning the steel sector with the UK’s 2050 net-zero target. The sector is targeting a 95% reduction in emissions within this timeframe and will then ‘net’ the residual emissions using approaches such as offsetting. However, spiraling energy costs have now become a deterrent for the sector.

Businesses are striving to increase green steel use and production globally, however. Members of the SteelZero initiative, for example, have pledged to buy and use 50% lower-emission steel by 2030, supporting a long-term ambition of using 100% net-zero steel by 2050.

 

 


 

 

Source edie

EU Parliament confirms 2035 ban on new petrol and diesel cars

EU Parliament confirms 2035 ban on new petrol and diesel cars

The law, which requires that manufacturers achieve a 100% reduction in CO2 emissions from new cars sold in the EU by 2035, received 340 votes for, 279 against and 21 abstentions.

It sets an intermediate target of a 55% reduction in CO2 emissions for cars compared with 2021 levels and a 50% reduction for vans by 2030.

Low-volume manufacturers – those producing 1000 to 10,000 new cars or 1000 to 22,000 new vans per year – may be given an exemption from the rules until the end of 2035.

Those registering fewer than 1000 new vehicles annually will continue to be exempt thereafter.

By 2025, the European Commission will present methodology for assesssing and reporting the lifetime CO2 emissions of new cars and vans. Every subsequent two years, it will publish a report to evaluate the EU’s progress towards zero-emissions road mobility.

Then, by December 2026, it will monitor the gap between the legally determined emissions limits and real-world fuel and energy consumption data; and draw up methodology for adjusting manufacturers’ specific CO2 emissions.

Existing incentives for manufacturers selling more zero- and low-emissions vehicles (0-50g/km of CO2) will be adapted in line with sales trends, said the EU Parliament in a statement. These are expected to fall as uptake of battery-electric and plug-in hybrid vehicles increases.

The legislation was agreed in October 2022 and will now be sent to the Council of the European Union for formal approval. This will take place in the coming weeks.

Jan Huitema, the EU Parliament’s lead negotiator for the law, said: “This regulation encourages the production of zero- and low-emission vehicles. It contains an ambitious revision of the targets for 2030 and a zero-emission target for 2035, which is crucial to reach climate-neutrality by 2050.

“These targets create clarity for the car industry and stimulate innovation and investments for car manufacturers.

“Purchasing and driving zero-emission cars will become cheaper for consumers and a second-hand market will emerge more quickly. It makes sustainable driving accessible to everyone.”

Numerous manufacturers have existing electrification targets that put them on pace to comply with the new legislation.

French brands Renault and Peugeot also aim to go all-electric in Europe by 2030, while Volkswagen aims to reduce its carbon emissions per vehicle by 40% compared with 2018 levels by 2030.

Premium makers have also made headway on electrification: 41% of Volvo’s 615,121 new car sales in 2022 were plug-in hybrid (23%) and electric (18%), while Mini’s best-selling model was the Mini Electric.

Other manufacturers, such as Dacia, have plotted a different course: the Renault-owned company plans to meet CO2 targets by building lightweight, fuel-efficient ICE cars, critical to maintaining the brand’s price advantage.

Nonetheless, its sole electric car, the Dacia Spring, was one of Europe’s best-selling EVs in 2022, beating the likes of the Cupra Born, Hyundai Ioniq 5 and Polestar 2.

 

 


 

 

Source Autocar